
All You Need Is a Fuzzing
Brain: A Retrospective

Jeff Huang, Ze Sheng, Qingxiao Xu, Matthew Woodcock

Texas A&M University

Open Source

Full CRS (identical to what’s used in the aixcc final round)

https://github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain

Local version (runs on a single VM w/ docker image):

- https://github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain/tree/jeff
-

Semi-final CRS: https://github.com/o2lab/asc-crs-all-you-need-is-a-fuzzing-brain

https://github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain
https://github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain/tree/jeff
https://github.com/o2lab/asc-crs-all-you-need-is-a-fuzzing-brain

All You Need Is a Fuzzing
Brain

All You Need Is a Fuzzing
Brain

All You Need Is a Fuzzing
Brain

LLMs

All You Need Is a Fuzzing

Brain

minimal

*** NOTE: fuzzing was not performed, you have only
*** executed the target code on a fixed set of inputs.

Agenda

• What did we learn from the AIxCC competition?

• What surprised us and what challenged us the most?

• What motivated Flagship vs. Open Source models?

• What should AI cybersecurity pursue next?

What did we learn from the AIxCC competition?

- First of all, AIxCC is a great challenge!

- Today’s LLMs are already super good at discovering and patching code
vulnerabilities

- Building a reliable AI-based system is not easy (actually very hard!)

Fastest POV && Fastest Patch

- Almost all our POV/Patch ✅ within 20mins
- Some within 5 mins from POV to Patch end-to-end

Parallelization: parallelize almost everything we can parallelize

- Allocated ~100 VM (each 32-192 cores)
- Each VM runs 100-10K threads simultaneously

An Overview of Our CRS

An illustration of CRS workflow

Static Analysis Service

Submission Service

CRS Web Service

worker1 worker2 worker3 worker4

worker5 worker6 worker7 worker8

Worker93 Worker94 Worker95 Worker96

… …… …

New
task

An illustration of CRS workflow

Static Analysis Service

Submission Service

CRS Web Service

worker1 worker2 worker3 worker4

worker5 worker6 worker7 worker8

Worker93 Worker94 Worker95 Worker96

… …… …

New
task

- Build docker images
- Build ALL fuzzers (per

harness x 3 (address,
memory, undefined)

send the task to
the analysis
service

- C: bear + SVF
(callgraph LLVM IR)

- Java: codeql

An illustration of CRS workflow

Static Analysis Service

Submission Service

CRS Web Service

worker1 worker2 worker3 worker4

worker5 worker6 worker7 worker8

Worker93 Worker94 Worker95 Worker96

… …… …

New
task

- Build docker images
- Build ALL fuzzers (per

harness x 3 (address,
memory, undefined)

fuzzer1
fuzzer2

fuzzerN

An illustration of CRS workflow

Static Analysis Service

Submission Service

CRS Web Service

New
task

fuzzerX

workerX

An illustration of CRS workflow

Static Analysis Service

Submission Service

CRS Web Service

New
task

- Build docker images
and fuzzerX

- Focus on fuzzerX
- POV (~10 strategies)
- Patch (~10 strategies)
- XPatch (w/o POV)

fuzzerX

workerX

POV Patch

XPatch

An illustration of CRS workflow

Static Analysis Service

Submission Service

CRS Web Service

New
task

fuzzerX
POV

Reachable
functions

Function
metadata

LLMs
(claude sonnet, opus,
gpt-o3, gemini-2.5, …)

- LLM generates
Python code

- Execute code to write
input blobs

- Test fuzzer w/ blobs

…

Crash blobs

An illustration of CRS workflow

Static Analysis Service

Submission Service

CRS Web Service

New
task

fuzzerX
Patch

Reachable
functions

Function
metadata

LLMs
(claude sonnet, opus,
gpt-o3, gemini-2.5, …)

- LLM identifies target
vulnerable functions

- LLM generates full
patched code for
each target function

…

Patch diffs

- Rewrite target function
- Build and validate
- Generate diff via git diff

An illustration of CRS workflow

Static Analysis Service

Submission Service

CRS Web Service

New
task

fuzzerX
XPatch

Reachable
functions

Function
metadata

LLMs
(claude sonnet, opus,
gpt-o3, gemini-2.5, …)

- LLMs scan all reachable
functions

- Rank top 5 vulnerable
functions per common
vuln (e.g., backdoor) w/
confidence level

…

Patch diffs
- LLMs generate patched

functions directly for high
confidence vuln funcs

- Fuzzing for 60s to validate
- Generate diff via git diff

Submission service

Submission
Service

Worker 1

Worker 2

Worker 3

.

.

.

Worker X

Strategies
Competition

API

All POVs &
Patches

When strategies try to submit a pov or patch,
it will send it to submission service first

Deduplication

Signature

Crash Type

Call Trace

Static analysis service

- CodeQL

Reachability Analysis

Call Path Analysis

entrance_func

Reachable functions

Reduce
loops/repeated
functions

Harness 1:
Reachable functions: func_1/func_2/func_3…
Call Paths:
func_1:{entrance_func->func_…->func1}
func_2:{entrance_func->func_…->func2}
…

What surprised us and what challenged us the most?

- The speed of LLM improvements is dramatic
- LLM capabilities for discovering/patching real-world vulnerabilities, even for open models

- GPT-3.5 -> gpt-4o -> claude-3.5 -> gpt-o1 -> gpt-o3, opus-4, gemini-2.5 …
- LLM can often successfully generate complex working code in 1-2 attempts

- >90% of our CRS code is generated by AI (Cursor)
- 50 KLOC Go
- 50 KLOC Python

- Building a reliable CRS is highly challenging
- Testing and debugging LLM-based components
- Rate limits, race conditions, fallback models, etc

Specific challenges

1. Developing our CRS using multiple programming languages with concurrent strategies created race conditions

and crashes, requiring extensive testing and debugging efforts

2. For full-scan challenges requiring comprehensive codebase analysis, the search space remained enormous

despite employing multiple static analysis strategies and pruning techniques

3. Patch generation proved challenging as LLMs often produced limited fixes that could pass PoV tests but ❌ed

functional testing, and struggled with correct patch formatting - particularly handling line numbers and chunk

diff metadata correctly

4. Long-context conversations significantly increased LLM hallucination rates and false positives, leading to CRS

inefficiency and unreliable outputs during extended analysis sessions

A race condition (revealed in Exhibition Round2)

Multiple parallel POV strategies generated input blobs in the same folder with the
same name…

- Successful POV blobs are overwritten by unsuccessful ones
- Leading to many False Positive POVs submitted

pov_success, blob_path = GeneratePOV(strategy_x, llm_x)

if pov_success:
submitPOV(blob_path)

What should AI cybersecurity pursue next?

- Further improvements of open & frontier models
- We plan to position our CRS as a standardized benchmark that allows researchers to

test and compare the performance of various LLMs

- Developing training/evaluation datasets for LLM cyber-reasoning capabilities

- More advanced PoV/Patching agents
- Efficiency (faster and cheaper)
- More complex vulnerabilities (logical flaws, no harnesses, etc)
- Patch Validation, current validation is just pov & functionality tests. We need more robust patch

validation strategy.
- System-support for building AI-based CRS

- Testing and debugging tools

Open Source vs. Flagship Models

- Much effort was put towards working with LLAMA, QWEN, or Deepseek for
steps in our pipeline

- Evaluations could not justify the switch

- Time required to fine tune models was not realistic

NGINX Test Environment Results (Locating Only)

Model CP
V1

CP
V2

CP
V3

CP
V4

CP
V5

CP
V8

CP
V9

CP
V10

CP
V11

CP
V12

CP
V13

CP
V14

CP
V15

CP
V17

(For Comparison)
Gemini 2.0 Flash

✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ ❌ ✅ ❌ ❌ ✅

Deep Seek R1 ❌ ✅ ❌ ❌ ✅ ✅ ❌ ❌ ✅ ❌ ✅ ❌ ✅ ✅

LLAMA 3.1 70b ❌ ✅ ❌ ❌ ✅ ✅ ❌ ✅ ✅ ❌ ✅ ❌ ❌ ✅

LLAMA 3.3 70b ✅ ✅ ❌ ❌ ✅ ✅ ❌ ✅ ✅ ❌ ✅ ❌ ❌ ✅

Model & Challenges Evaluation by Our CRS

- 9 Projects

- 19 Delta-Scan
Challenges

- 10+ CWEs

- C & Java

Challenge Distribution

Flagship Model & Challenges Evaluation by Our CRS

Model Name POV ✅ Patch ✅ Average Time (Include
task building)

Claude-Sonnet-4 18/19 19/19 22:03

Claude-Opus-4 18/19 19/19 32:58

Claude-Sonnet-3.7 18/19 19/19 25:17

Claude-Sonnet-3.5 15/19 11/19 28:12

GPT-4.1 18/19 19/19 18:29

GPT-o4-mini 18/19 15/19 19:51

GPT-o3-pro 18/19 16/19 39:58

GPT-4o 12/19 7/19 20:43

Open Source

Full CRS (identical to what’s used in the aixcc final round)

https://github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain

Local version (runs on a single VM w/ docker image):

- https://github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain/tree/jeff
-

Semi-final CRS: https://github.com/o2lab/asc-crs-all-you-need-is-a-fuzzing-brain

https://github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain
https://github.com/o2lab/afc-crs-all-you-need-is-a-fuzzing-brain/tree/jeff
https://github.com/o2lab/asc-crs-all-you-need-is-a-fuzzing-brain

