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Abstract—Images are essential for many Android applications
or apps. Although images play a critical role in app functionalities
and user experience, inefficient or improper image loading and
displaying operations may severely impact the app performance
and quality. Additionally, since these image loading defects may
not be manifested by immediate failures, e.g., app crashes, exist-
ing GUI testing approaches cannot detect them effectively. In this
paper, we identify five anti-patterns of such image loading defects,
including image passing by intent, image decoding without resiz-
ing, local image loading without permission, repeated decoding
without caching, and image decoding in UI thread. Based on these
anti-patterns, we propose a static analysis technique, IMGDroid,
to automatically and effectively detect such defects. We have
applied IMGDroid to a benchmark of 21 open-source Android
apps, and found that it not only successfully detects the 45
previously-known image loading defects but also finds 15 new
such defects. Our empirical study on 1,000 commercial Android
apps demonstrates that the image loading defects are prevalent.

Index Terms—Android app, image loading, defect analysis

I. INTRODUCTION

Android applications (apps for short) often use images not
only to enhance user experience but also to better provide their
functionalities and services to users. Android SDK and several
third-party libraries (frameworks) provide easy-to-use APIs,
which allows app developers to implement image loading
and displaying conveniently. Our empirical study on 1,000
commercial apps shows that over 89% apps use such SDKs or
libraries. However, since the high-resolution images (e.g., the
pictures taken by the device camera) are usually very large,
inefficient or improper programming practices (e.g., the APIs
are used inappropriately) can severely impact the performance
and quality of apps, causing memory bloat, GUI lagging, slow
responsiveness, or app crashes [1], [2], [3]. These inefficient
programming practices of image loading, called image loading
defects in this paper, are regarded as non-functional bugs [3].

Since the image loading defects mainly impact the perfor-
mance of apps, existing testing-based approaches that aim
at finding app failures may find difficulties in manifesting
them [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. Be-
sides testing approaches, although a wide variety of techniques
have been proposed to help improve app performance and
quality [15], [1], [16], [17], [18], [19], [20], [21], [22], [23],
little work focuses on the defects or code smells particularly
relevant to image loading and displaying in apps [2], [3].

In this paper, we extract five image loading anti-patterns
from both Android Developers1 and the reported issues of
real-world apps in GitHub2, and develop an automated static
analysis to detect such image loading defects based on these
anti-patterns. The five anti-patterns are all reported to reduce
the performance or even the quality of apps, which are
summarized below:
• Image passing by intent refers to the situation that an

app employs intents to pass images between different
activities, which severely degrades the app performance.

• Image decoding without resizing refers to the situation
that an image is decoded without its shape and size
reduced to fit for the component (e.g., a view) in which
it displays.

• Local image loading without permission refers to the
situation that an app tries to load images from the local
storage of the device with no access permission, which
directly makes the app crash.

• Repeated decoding without caching refers to the situa-
tion that an image is decoded in a component’s callback
function, and thus the image could be repeatedly decoded
each time when the callback function is invoked.

• Image decoding in UI thread refers to the situation that
an image is decoded in the UI thread of the app, which
can degrade the app performance, causing GUI lagging
and even ANR (application not responding).

In practice, there may exist other kinds of defects relevant
to image loading and displaying, but in this paper we only
focus on the five image loading anti-patterns. For each of the
five anti-patterns, we develop a static analysis to automatically
detect such defects (concrete instances matching the anti-
pattern) in apps. Since some anti-patterns can occur to different
image frameworks (including the Android SDK), our static
analysis varies accordingly and is tailored to different image
frameworks. To ensure the soundness of our analysis, all image
loading operations in the app are covered and analyzed. To
balance accuracy and scalability, our analysis is based on a
context-insensitive caller (callee) analysis and a path-sensitive
inter-procedural control flow analysis.

1https://developer.android.com/guide
2https://github.com



We implemented our static analysis in an open-source
tool IMGDroid based on Soot [24]. IMGDroid is written
in Java and is publicly available on GitHub3. To evaluate
the effectiveness and efficiency of our approach, we have
applied IMGDroid to 21 open-source Android apps. IMG-
Droid finished the analysis in 2,424 seconds, and it not only
successfully detected the 45 previously-known image loading
defects but also found 15 new such defects in these 21 apps.
To investigate image loading defects extensively, with the help
of IMGDroid, we further conducted an empirical study on
1,000 commercial apps randomly selected from Google Play
(downloaded in Dec 2018). The empirical results demonstrate
image loading defects are pervasive in practice: 865 (86.5%)
apps involve at least one kind of image loading defects, and
each of the apps has on average 6.32 image loading defects.

In a nutshell, our contributions are highlighted as follows:
1) According to the issue reports of real-world apps, we

summarize five common image loading anti-patterns in
Android apps that can degrade app performance and
quality or even lead to app crashes.

2) We present IMGDroid, a static analysis approach and an
open-source tool, to automatically detect image loading
defects based on the five anti-patterns. The experiment
on a benchmark of 21 open-source apps show the effec-
tiveness and efficiency of IMGDroid.

3) With IMGDroid, we conduct an empirical study on 1,000
real-world commercial apps. The results indicate that
image loading defects are severe in practice.

The remainder of the paper is organized as follows. Sec-
tion II introduces the background on image loading in Android
apps. Section III presents our static analysis for detecting
image loading defects. Section IV evaluates our approach
with real-world apps. Section V reviews the related work, and
Section VI concludes the paper.

II. BACKGROUND

We first introduce background on image loading and dis-
playing in Android apps. Readers familiar with image APIs in
Android may skip this section and jump to Section III directly.

A. Frameworks for Managing Images
When designing Android apps, the developers can employ

the relevant APIs from the Android SDK to load and dis-
play images in apps. In Android SDK, BitmapFactory,
Drawable, and ImageView are the classes responsible for
processing images. Developers can use the related methods in
these classes to create Bitmap objects from various sources,
including files, streams, and byte-arrays.

Besides Android SDK, there are also some third-party
libraries (frameworks) that are often used to manage images
in apps, such as Universal-Image-Loader4, Glide5,
Picasso6, Fresco7, etc. Universal-Image-Loader

3https://github.com/wsong-nj/IMGDroid
4https://github.com/nostra13/Android-Universal-Image-Loader
5http://bumptech.github.io/glide
6https://square.github.io/picasso
7https://frescolib.org

TABLE I
POPULAR THIRD-PARTY FRAMEWORKS FOR IMAGE LOADING AND

DISPLAYING IN ANDROID APPS

Framework Release
time

Size of
memory
required

GIF
supported Cache method

Universal-
Image-Loader

2011 150K+ No Memory and disk cache

Glide 2012 500K Yes Memory and disk cache
Picasso 2013 10K+ No Memory and HTTP cache

Fresco 2015 2M+ Yes
Anonymous shared memory,

local heap memory,
and disk cache

Cache hit

BMP

Miss cache Miss cache

IMG

IMG

Cache hit

IMG

BMP

BMP IMG

Image display
request

Fig. 1. Workflow of image displaying in Android apps.

provides lots of configuration options and good control over
the image loading process. Picasso allows for hassle-free
image loading often in one line of code. Glide is an
efficient image loading library for Android focused on smooth
scrolling; it supports fetching, decoding, and displaying video
stills, images, and animated GIFs. Fresco puts images in a
special region of Android memory, which lets apps run faster
and suffer the OOM (out of memory) error much less often. In
this paper, we call these third-party libraries image frameworks
for short. Table I summarizes the basic information of these
image frameworks.

B. Image Loading and Displaying Procedure

No matter which image framework (also the Android SDK)
is used, the workflow of image loading and displaying in An-
droid apps is almost the same (cf. Figure 1): When receiving
a request to show an image, the app first tries to read the
corresponding bitmap object from the memory cache before
rendering (i.e., displaying the bitmap on the screen of the
device). If the bitmap is not in the memory cache, the app
then tries to read it from the disk cache. If it succeeds, the
app will decode the image (e.g., in JPG format) to obtain the
bitmap (which may then be cached in the memory) before
rendering. Otherwise, it has to load the image externally from
the network or the local storage. After some processing and
transformation (e.g., reducing the size of the image), the image
can be stored in the disk cache. The transformed image is then
decoded (may be cached in the memory) and finally rendered.

Note that the caching mechanism may or may not be used. If
it is not used, an external image is displayed in the app by the
following steps: loaded, transformed, decoded, and rendered.



Fig. 2. An overview of IMGDroid.

Although the workflow of image loading and displaying is
not complex, some image loading defects frequently occur in
practice, which are elaborated in Section III.

III. IMGDROID

In this section, we present our static analysis technique
IMGDroid for detecting image loading defects in apps.

Figure 2 illustrates the framework of IMGDroid. It takes an
app (APK file) as input and generates all image loading defects
(could be empty) in the app as output. IMGDroid is based on
Soot [24] and FlowDroid [25]. To scale to large commercial
apps, IMGDroid detects image loading defects by combining a
context-insensitive caller (callee) analysis and a path-sensitive
inter-procedural control flow analysis. Starting from the image
loading statements, IMGDroid utilizes different static analysis
techniques, for example, reachability analysis, dominator and
post-dominator (cf. Definitions 1 and 2) analysis, taint analy-
sis [25], and control dependence (cf. Definition 3) analysis, to
analyze whether the image loading defects of different kinds
exist or not. To ensure the soundness of the static analysis,
IMGDroid covers all image loading operations (statements)
in the app, and for each image loading statement, IMGDroid
searches all possible defects along all potential paths. If such
defects exist, the relevant information which is helpful for
debugging is also provided, including the kind of defects, the
image framework and APIs used, the locations (i.e., in which
methods) of the image loading operations.

Definition 1 (Dominator): In a control flow graph, a node (a
statement or a block of statements) N is dominated by another
node N ′ if every path from the entry of the control flow graph
to N includes N ′. N ′ is referred to as a dominator of N .

Definition 2 (Post-dominator): In a control flow graph,
a node (a statement or a block of statements) N is post-
dominated by another node N ′′ if every path from N to the
exit of the control flow graph includes N ′′. N ′′ is referred to
as a post-dominator of N .

Definition 3 (Control Dependence): In a control flow graph,
a node (a statement or a block of statements) N is control-
dependent on another node C iff there exists a path ρ from
C to N such that any statement (node) N ′ in ρ (excluding C
and N ) is post-dominated by N , and C is not post-dominated
by N .

1 public class ImageGridActivity{
2 public void onClick(View v){
3 int id = v. getId () ;
4 if ( id == R.id.btn preview){
5 Intent intent = new Intent (ImageGridActivity . this ,

ImagePreviewActivity . class ) ;
6 intent . putExtra (ImagePicker.

EXTRA SELECTED IMAGE POSITION, 0);
7 intent . putExtra (ImagePicker.EXTRA IMAGE ITEMS,

imagePicker.getSelectedImages());
8 intent . putExtra (ImagePreviewActivity . ISORIGIN, isOrigin);
9 intent . putExtra (ImagePicker.EXTRA FROM ITEMS, true);

10 startActivityForResult ( intent , ImagePicker.
REQUEST CODE PREVIEW);

11 }
12 }
13 }

Fig. 3. A reported defect (issue report #49) of image passing by Intent in a
real-world app ImagePicker (version 0.4.7).

In each of the following sub-sections, we first describe
a kind of image loading defects, and then elaborate on the
method how IMGDroid detects such kinds of defects.

A. Detecting Image Passing by Intent

Android uses intent for the interaction between dif-
ferent components (e.g., activities). Intent can bring some
data of different types, e.g., int, Boolean, String, or Parce-
lable and Serializable objects. If an activity intends to send
some data to another activity, it should first prepare the
data through intent.putExtra(‘‘key’’, value)
or bundle.putParcelable(‘‘key’’, value) and
intent.putExtra(bundle), before starting the new ac-
tivity via startActivity(intent). However, if we use
intent to pass data with large size (e.g., 1M or even 0.5M),
the app performance can be undermined and exceptions may
occur8. Thus, using intent to pass image is regarded as a kind
of image loading defects (cf. Anti-pattern 1). To avoid this, one
can use intent to only pass the address or ID of the image.

Anti-pattern 1 (Image Passing by Intent): Passing image
via intent may degrade the app performance and even cause
an exception (i.e., app crash).

With the above explanation, our approach to de-
tecting image passing by intent is straightforward: in
the inter-procedural control flow graph of the app, if
the startActivity(intent) statement is reachable
from intent.putExtra(‘‘key’’, value) or bun-
dle.putParcelable(‘‘key’’, value), and the type
of value is Bitmap, Drawable, or BitmapDrawable,
then there is a defect of image passing by intent.

Figure 3 presents such a defect9, which can be ef-
fectively detected by our approach: the startActiv-
ity(intent) statement at Line 10 is reachable from
the intent.putExtra() statement at Line 7, and im-
agePicker.getSelectedImages() returns a bitmap.

8https://developer.android.com/guide/components/activities/parcelables-
and-bundles

9https://github.com/jeasonlzy/ImagePicker/issues/49



TABLE II
APIS FOR IMAGE DECODING, RESIZING, AND CACHING IN DIFFERENT FRAMEWORKS

Framework Decoding Resizing Caching

Android
native APIs

BitmapFactory.decodeFile(option),
.decodeFileDesccriptor(option),
.decodeStream(option),
.decodeByteArray(option),
.decodeRegion(option)

option.Injustdecodebounds = true &
option.inSampleSize > 1 LruCache.put()

Drawable.createFromPath(),
.createFromStream()
ImageView.setImageURI()

Universal-
Image-Loader

ImageLoder.displayImage(option) option.imageScaleType() option.cacheInMemory()

Fresco Fresco.setController(option) option.setResizeOptions() By default
Glide Glide.with().load() Glide.with().load().override() Glide.with().load().skipMemoryCache()

Picasso Picasso.with().load()
Picasso.with().load().resize(),
Picasso.with().load().resizeDimen(),
Picasso.with().load().fit()

Picasso.with().load().memoryPolicy(),
Picasso.with().load().networkPolicy()

B. Detecting Image Decoding Without Resizing

The images may come in different shapes and sizes. Their
sizes often exceed the requirement of a typical application
interface. Displaying an oversized image on a slim view does
not bring any visual benefit, and it may have a negative impact
on the app performance (e.g., occupying additional much
memory) or even lead to OOM (out of memory) exceptions
(cf. Anti-pattern 2)10. For example, since the resolution of
a picture (e.g., 4048 × 3036 pixels) taken with the camera
of an Android device is usually much higher than the screen
density, if the bitmap configuration used is ARGB 8888 (the
default for Android 2.3 and higher), loading a single picture
into memory takes about 48 MB of memory (4048 × 3036
× 4 bytes), which may immediately use up all the memory
available to the app. Therefore, when displaying a picture, it is
expected to compress it, and the size of the compressed image
should be similar to the size of the control used to display it.

Anti-pattern 2 (Image Decoding Without Resizing): A
decoded image could be considerably big in size, which
is expected to be resized. Otherwise, it may degrade the
app performance or even cause the OOM (out of memory)
exception.

Since the resource images are usually small and the devel-
opers have known their sizes, there is no need to resize them.
Thus, for Anti-pattern 2, we only consider external pictures
that come from the network and SD card. It is a true positive
provided there is a chance that a large picture can be loaded.

Different image frameworks generally use two ways to
implement image decoding and resizing. In the first way,
the decoding and resizing are implemented in one method,
i.e., the image resizing is controlled by a parameter (e.g.,
options) of the decoding method. In the second way,
the decoding and resizing are implemented by two sepa-
rate methods, respectively. Android native APIs from the
class BitmapFactory and the image frameworks such
as Universal-Image-Loader and Fresco follow the
first way, while the image frameworks such as Glide and
Picasso follow the second way. There are Android native

10https://developer.android.com/topic/performance/graphics/load-
bitmap.html#read-bitmap

1 public class SkiaImageDecoder implements ImageDecoder{
2 public Bitmap decode(Context context , Uri uri ) throws Exception

{
3 Bitmap bitmap;
4 String uriString = uri . toString () ;
5 Options options = new Options();
6 options . inPreferredConfig = Config.RGB 565;
7 if ( uriString . startsWith (ASSET PREFIX)){
8 bitmap = BitmapFactory.decodeStream(context . getAssets () .

open( uriString . substring (ASSET PREFIX.length())), null,
options ) ;

9 }
10 if (bitmap != null ){
11 return bitmap;
12 }
13 throw new RuntimeException("Skia image region

decoder returned null bitmap - image
format may not be supported");

14 }
15 }

Fig. 4. A reported defect (issue report #608) of image decoding without
resizing in a real-world app Leafpic (version 0.6-beta-1).

APIs that only implement image decoding without consider-
ing image resizing, i.e., Drawable.createFromPath(),
Drawable.createFromStream(), and ImageView.-
setImageURI(). If these three methods are used, the cor-
responding images are decoded without resizing. The second
and third columns of Table II summarize the concrete decoding
and resizing APIs of different image frameworks.

According to how image decoding and resizing are imple-
mented, we have the following two ways to check whether an
image is decoded without being resized:

• For Android native APIs and the image frameworks such
as Universal-Image-Loader and Fresco, if the
decoding statement does not have the argument (e.g.,
option) for image resizing, the image is decoded but
not resized. Otherwise, we further check whether the
argument has been adapted to reduce the image size
before decoding: If there is a statement (statements) that
reduces the image size by changing the argument and the
statement dominates the decoding statement, then there is
no defect; otherwise, the image is decoded without being
resized.



1 public class ImagePagerAdapterFromCursor extends PagerAdapter{
2 protected View createViewWithContent(int position , ViewGroup

container, String fullPhotoPath , String debugContext, int
size ){

3 final File imageFile = new File(Environment.
getExternalStorageDirectory () ,Environment.

DIRECTORY DCIM);
4 Bitmap bitmap = HugeImageLoader.loadImage(imageFile,

MAX IMAGE DIMENSION, MAX IMAGE DIMENSION)
;

5 }
6 }
7 public class HugeImageLoader{
8 public static Bitmap loadImage(File file , int maxWidth, int

maxHeight){
9 BitmapFactory.Options options = new BitmapFactory.Options() ;

10 options . inJustDecodeBounds = true;
11 BitmapFactory.decodeFile ( file . getAbsolutePath () , options ) ;
12 int downscale = calculateInSampleSize ( options , maxWidth,

maxHeight);
13 options . inSampleSize = downscale;
14 options . inJustDecodeBounds = false ;
15 return BitmapFactory.decodeFile ( file . getAbsolutePath () ,

options ) ;
16 }
17 }

Fig. 5. A reported defect (issue report #94) of local image loading without
permission in a real-world app A photo Manager (version 0.8.3.200315).

• For the image frameworks such as Glide and Picasso,
our detection is based on the post-dominator analysis on
the inter-procedural control flow graph of the app. For an
image decoding statement in the control flow graph, if
it is always post-dominated by a corresponding resizing
statement, then the image loading is correct; otherwise,
there is a defect of decoding without resizing.

Figure 4 exhibits such a defect11, which can be effectively
detected by our approach: the decodeStream() method is
invoked at Line 8, but its argument option is not adapted
between Line 5 and Line 8 as suggested in Table II for image
resizing.

C. Detecting Local Image Loading Without Permission

For Android 6.0 or higher, users are not notified of any
app permissions when installing apps. Instead, users are asked
to grant the permissions at runtime. Users may also have
the option to enable or disable permissions one-by-one in
system settings. Hence, the apps should always check for
and request permissions at runtime to avoid runtime errors.
Reading images from the local storage (SD card) is no
exception. Otherwise, the app may crash due to no access
permission (cf. Anti-pattern 3)12.

Anti-pattern 3 (Local Image Loading Without Permission):
Before reading images from the local storage, the app should
check for and request the access permission at runtime.
Otherwise, the app may crash due to no access permission.

11https://gitlab.com/HoraApps/LeafPic/-/issues/608
12https://developer.android.com/training/permissions/requesting

Our approach to detecting this category of defects for
different image frameworks is similar, which includes three
steps:

1) We first check whether there is an image decoding state-
ment that uses a variable returned by the invocation of
the method getExternalStorageDirectory().
If no, there is no such defect. Otherwise, go to step (2).

2) We next query in the AndroidManifest file whether the
app declares to get the permission to read the external
storage. If no, we find a defect of local image loading
without permission. Otherwise, go to step (3).

3) We finally check whether the image decoding
statement is control-dependent on a statement
that determines whether the app has obtained
the permission to read the external storage (i.e.,
if(ContextCompat.checkSelfPermission(a-
ndroid.permission.READ_EXTERNAL_STORAG-
E)) or if(EasyPermissions.requestPermiss-
ions(android.permission.READ_EXTERNAL_-
STORAGE))). If no, we find a defect of local image
loading without permission.

The first two steps can be implemented based on the data
flow analysis (taint analysis) of FlowDroid [25]. Let the dec-
larations of the methods getExternalStorageDirec-
tory() (the declaration of the required permission is also
included) and decodeFile() (or other decoding APIs in
Table II) be the source and sink, respectively. FlowDroid can
return all statement pairs (e.g., <from, to>) that may lead to
the defects of local image loading without permission, where
from is a statement that invokes getExternalStor-
ageDirectory() and to is the corresponding decoding
statement. For each pair of statement <from, to>, we finally
determine whether or not the decoding statement to loads a
local image without the permission checked first.

Figure 5 shows such a defect13, which can be effectively
detected by our approach: the statement at Line 4 (Line 11)
loads (decodes) an image from the local storage; although the
app’s AndroidManifest file declares the permission to read
the external storage, the app performs the decoding operation
without firstly checking whether or not it has obtained the
corresponding permission.

D. Detecting Repeated Decoding Without Caching

In many cases, the loaded images are displayed in the
GUI components (widgets) such as views (subviews). To
save memory, Android limits the memory footprint of GUI
components by recycling views (subviews) that move out of
the screen, and the garbage collector assumes that no long-
term references will be kept, so it also releases the loaded
bitmap. Thus, each time the views (subviews) return to the
screen, the pictures have to be reprocessed, which needs
extra CPU/GPU cycles for image decoding and transformation.
Since image decoding is slow, to make sure that the image
can be loaded quickly and smoothly, one had better avoid

13https://github.com/k3b/APhotoManager/issues/94



1 public class RecentAdapter{
2 public View getView(){
3 ThumbnailFile. load( true ) ;
4 }
5 }
6 public class ThumbnailFile extends File{
7 private Bitmap load( final boolean raw){
8 if ( this . exists () ){
9 final Bitmap stored = BitmapFactory.decodeFile ( this . getPath

() ) ;
10 if ( stored != null ){
11 return raw ? stored : paint ( stored ) ;
12 }
13 }
14 return getDefaultThumbnail() ;
15 }
16 }

Fig. 6. A reported defect (issue report #233) of repeated decoding in a real-
world app Document Viewer (version 2.7.9).

repeatedly processing these pictures each time they return to
the screen14. To this end, cache can be used, which allows the
component to quickly reload the decoded image (in-memory
object). Otherwise, it will lead to a negative impact on the app
performance (cf. Anti-pattern 4).

Anti-pattern 4 (Repeated Decoding Without Caching):
When image loading is implemented in the components’
callback functions (e.g., getView(), onDraw(), on-
BindViewHolder(), getGroupView(), getChild-
View()), if the image is not cached, the image will be
repeatedly decoded each time when the callback function
is executed, which not only causes GUI lagging but also
requires many extra CPU/GPU cycles for image decoding and
processing.

We have the following ways to determine repeated decoding
without caching:
• The image frameworks Android native APIs (ex-

cept ImageView.setImageURI()), Picasso, and
Glide), implement image decoding and caching by two
separate methods, respectively. In the inter-procedural
control flow graph of the app, if the image decoding state-
ment is not post-dominated by a corresponding image
caching statement, then the image is not cached. Please
refer to the last column of Table II for the caching APIs
of different image frameworks.

• For the image framework of Universal-Image-
Loader, both resizing and caching are controlled
by the parameter of the decoding method dis-
playImage(DisplayImageOptions). If the de-
coding statement does not have the argument, then
the image is not cached. Otherwise, we further check
whether the argument has been set to open the caching
switch via option.cacheInMemory(). If dis-
playImage(option) is not dominated by op-
tion.cacheInMemory(), then the image is not
cached after decoded.

14https://developer.android.com/topic/performance/graphics/cache-bitmap

1 private class a extends SimpleOnGestureListener{
2 protected void onDraw(Canvas canvas){
3 if ( this .H != −1){
4 a ((com.byox.drawview.a.a) this .F.get ( this .H), this . r ) ;
5 }
6 }
7 private void a(com.byox.drawview.a.a aVar, Canvas canvas){
8 canvas .drawBitmap(BitmapFactory.decodeByteArray(aVar.l() , 0,

aVar. l () . length ) , aVar.k() , null ) ;
9 }

10 }

Fig. 7. A reported defect (issue report #14) of image decoding in UI thread
in a real-world app Quick-draw-everywhere (version 1.9).

• The Fresco framework caches images by default,
which cannot be changed. Hence, repeated decod-
ing without caching cannot occur to the Fresco
code. For the Android native decoding API Im-
ageView.setImageURI(), there is neither the cor-
responding caching method nor the parameter to con-
trol the image caching. Thus, the images decoded with
ImageView.setImageURI() in those callback func-
tions must suffer from repeated decoding.

Figure 6 presents a defect of repeated decoding without
caching15, and our approach is able to effectively detect it:
each time the callback getView() is triggered, the statement
at Line 3 (Line 9) will load (decode) the image repeatedly
without caching through LruCache.put().

E. Detecting Image Decoding in UI Thread

It is suggested that time-consuming operations such as
loading pictures should not be performed in the UI (main)
thread [17], [26], because loading bitmaps in the UI thread
could reduce the performance of the app16, resulting in GUI
lagging, longer response time, and even ANR (application not
responding) (cf. Anti-pattern 5). Therefore, it is better to load
pictures in background threads.

Anti-pattern 5 (Image Decoding in UI Thread): When
image is loaded in the UI thread instead of the background
thread, the app performance could be reduced, resulting in GUI
lagging, longer response time, and even ANR (application not
responding).

To avoid defects (instances) of Anti-pattern 4, apps can load
images in the UI thread with cache, whereas to avoid defects
of Anti-pattern 5, apps should not load images in the UI thread
no matter whether cache is used.

For the frameworks such as Universal-Image-
Loader, Glide, and Fresco, their image decoding
methods all load images asynchronously (i.e., in back-
ground threads). Therefore, this kind of defects can-
not happen to the code of these image frameworks.
For Android native APIs, the image decoding method
can be invoked in UI thread and background threads.
The Picasso framework provides both asynchronous

15https://github.com/SufficientlySecure/document-viewer/issues/233
16https://developer.android.com/topic/performance/graphics



(Picasso.with().load()) and synchronous image de-
coding methods (Picasso.with().load().get()).

For Android image decoding methods and the synchronous
image decoding method of Picasso, we need to check
whether they are invoked in background threads. Our analysis
is based on the call graph of the app. In the call graph, if
the decoding method can only be reachable via the method of
starting a background thread, this indicates that the decoding
method can only be invoked in a background thread; otherwise,
there must exist at least one invocation chain (a path in the call
graph) that leads to the decoding method but does not contain
a method of starting a background thread. By back tracking the
invocation chain, if we can find the callback function (event
handler) of a UI event (to exclude the situation when an image
decoding method is encapsulated in a third-party API which
is never used by the app), then there is a defect of image
decoding in UI thread.

Figure 7 illustrates such a defect17, and our approach is able
to effectively detect it: the image decoding operation at Line
4 (Line 8) is performed in the GUI callback onDraw().

IV. EMPIRICAL EVALUATION

In this section, we first evaluate our approach by an experi-
ment on 21 open-source apps with 45 previously-known image
loading defects18, and then conduct a large-scale empirical
study on 1,000 real-world commercial apps19. Our experi-
mental evaluation and empirical study aim at answering the
following research questions:
• RQ1 - Performance of IMGDroid: What are the effec-

tiveness and efficiency of IMGDroid?
• RQ2 - Image usage frequency: Do apps frequently load

and display images to fulfil their functionalities? And,
what are the usage frequencies of different image frame-
works for Android apps?

• RQ3 - Pervasiveness of image loading defects: Are image
loading defects common in commercial apps?

• RQ4 - Dominant image loading defects: Among the five
kinds of image loading defects, which kind is the most
prevalent?

• RQ5 - Distribution of image loading defects: How are the
five kinds of image loading defects distributed in different
image frameworks?

We implement IMGDroid in Java and disclose it as an open-
source tool. We use IMGDroid to analyze real-world apps on
a computer with an Intel Core i7 3.6GHz CPU and 32 GB of
memory, running Windows 10, JDK 1.8, and Android 7.1.1.

A. Experiment on Benchmarks

To evaluate the effectiveness and efficiency of IMGDroid,
we first conduct an experiment on a benchmark which contains
21 open-source Android apps (cf. Table III). The 21 apps are
available from F-droid20 and their source code is maintained

17https://github.com/rosenpin/quick-draw-everywhere/issues/14
18https://zenodo.org/record/4392284
19https://zenodo.org/record/4392292
20https://f-droid.org

in GitHub except that Leafpic is maintained in GitLab21. In the
21 apps, there are totally 45 previously-known image loading
defects, which were either confirmed by the developers or
provided with crash report by the app users. The distribution
of the 45 defects is summarized in Table III: For example,
“2(#234, #269)” in the second row, fourth column, represents
that there are two known defects (instances) of Anti-pattern 2
(AP2 for short in Table III) in the app Kontalk, where #234
and #269 refer to the corresponding issue reports in GitHub
or GitLab.

We apply IMGDroid to these 21 apps. IMGDroid success-
fully reproduces (finds) all the 45 previously-known defects
in about 2,424 seconds (on average 115.4 seconds for each
app), and additionally finds 15 previously-unknown defects
which are also shown in Table III: For example, “1(#69)+2”
in the sixth row, ninth column, represents that besides the
previously-known defect (#69) of Anti-pattern 5 (AP5 for short
in Table III), IMGDroid additionally detects two new defects
of Anti-pattern 5 in the app OpenNoteScanner. We manually
inspected the code of the newly-found defects and confirm that
these 15 new defects are all true positives.

We further find that 5 of the 15 newly-found defects have
been fixed in the latest app versions. Thus, we have recently
reported the remaining 10 defects to the corresponding devel-
opers, and 3 have been confirmed so far. The other 7 defects
have not received feedback yet because the projects have not
been updated for a long time.

It is worth mentioning that TAPIR [3] is also a static analy-
sis tool that can detect the defects of Anti-patterns 2, 4, and 5,
whereas defects of Anti-patterns 1 and 3 are not considered.
Since TAPIR is not open-source or publicly available, we
cannot apply it to the 21 apps to compare with our approach.
However, from their paper [3] the experimental results on
the first 10 apps, as shown in Table III indicate IMGDroid
is significantly more effective than TAPIR with respect to
soundness: while TAPIR can successfully detect all 29 defects
in these 10 apps, it does not find the 11 new defects of Anti-
patterns 2, 4 and 5 that are found by IMGDroid. These 11
defects reported by IMGDroid are all manually confirmed as
true positives. In addition, since IMGDroid covers all image
loading operations (statements), and for each image loading
statement, IMGDroid examines all possible defects along all
potential paths, IMGDroid has a higher coverage than TAPIR.
Other reasons for defects missed by TAPIR include path
insensitivity and inaccurate reasoning. Meanwhile, IMGDroid
is as precise as TAPIR: according to their paper, TAPIR does
not report false positives on these 10 apps, whereas in our
experiments IMGDroid does not report false positives on all
the 21 apps. The reason why IMGDroid is precise lies in that:
1) The image loading procedure is relatively simple and thus is
usually implemented in simple control flow. 2) Image loading
can be regarded as a read operation and is suggested to be
implemented in a single background thread, and thus there is
little non-determinacy.

21https://gitlab.com



TABLE III
BENCHMARKS AND EXPERIMENTAL RESULTS: THE NUMBER IN CYAN REPRESENTS THE NUMBER OF NEWLY FOUND DEFECTS, AND EACH EMPTY

CELL REPRESENTS THAT THERE IS NO PREVIOUSLY-KNOWN OR NEWLY FOUND DEFECTS

App name LOC #Defects
of AP1 #Defects of AP2 #Defects

of AP3 #Defects of AP4 #Defects of AP5

IMGDroid TAPIR IMGDroid TAPIR IMGDroid TAPIR
Kontalk 19.6K 2(#234, #269)+1 2 1(#789)+1 1
Qksms 3.5K 2(#718, #719) 2 2(#718, #719) 2 2(#718, #719)+1 2
Document Viewer 49.6K 1(#233) 1 2(#233) 2
Owncloud 49.1K 3(#1862) 3 2(#1862) 2 1(#1862) 1
OpenNoteScanner 2.7K 2(#12)+1 2 1(#69)+2 1
The blue alliance 31.4K 1(#588) 1
MoneyManagerEx 30.9K 1(#938) 1 +3 +0
Collect 1.4K 1(#2020) 1 +1 +0 +1 +0
AmazeFileManager 3.5K 1(#577) 1
Tusky 5.7K 4(#1043) 4

App name LOC #Defects
of AP1 #Defects of AP2 #Defects

of AP3 #Defects of AP4 #Defects of AP5

Quick-draw-everywhere 6.6K 1(#14) 1(#14)
Droid-comic-viewer 56K 1(#13)+2
CameraView 45.4K 1(#252)
Clover 68.5K 1(#745)
Leafpic 78.6K 1(#608)+2
A photo Manager 19.1K 1(#94) 1(#74)
Scarlet-Notes 96.8K 1(#166)
ImagePicker 23.8K 1(#49) 1(#129)
GlideImageView 41.4K 1(#51)
Easy xkcd 85.5K 1(#135) 1(#107)
PhotoPicker 23.22K 1(#36) 1(#50)

The experimental results and the conclusion derived from
the results are summarized as follows.

Answer to RQ1: IMGDroid successfully detects all the
45 previously-known defects in the 21 apps within about
2,424 seconds, and additionally finds 15 previously-unknown
defects which are manually confirmed.
Implication: The static analysis of IMGDroid for detecting
image loading defects is efficient, and tends to perform well
in terms of both soundness and completeness.

B. Empirical Study on 1,000 Commercial Apps

To investigate image loading defects in practice, we further
apply IMGDroid to 1,000 commercial apps randomly selected
and downloaded from the app store of Google Play. These
1,000 apps cover various types and functionalities, and with
sufficient downloads. IMGDroid scales well on these commer-
cial apps; for example, it only spends 266 seconds in analyzing
a large (88M) app. The empirical results are summarized in
Table IV and we gain the following interesting findings.

Answer to RQ2: Among the 1,000 apps, 897 (89.7%)
involve image decoding and displaying operations. The to-
tal numbers (proportions) of apps that use Android native
APIs, Picasso, Glide, Universal-Image-Loader,
and Fresco are 854 (85.4%), 78 (7.8%), 83 (8.3%), 45
(4.5%), and 0 (0%), respectively.
Implication: Image loading APIs are broadly used in An-
droid apps. Among the image frameworks, Android native
APIs are the most frequently used, whereas Fresco has
been seldom used.

The answer and implication of RQ2 indicate that image
loading and displaying is one fundamental functionality of
many commercial apps no matter whether the apps are media-
intensive.

For the 1,000 apps, since there are no previously-known
image loading defects reported, we used a substantial manual
inspection on 2% of the 1,000 apps to improve our confidence
on the results generated by IMGDroid: We first randomly
selected 20 apps from the 1,000 apps, where they are large
popular apps in different categories (e.g., BBC News, Google
Assistant, Google PDF Viewer, Amazon, Airbnb, All Football,
Sogou Explorer, Tiktok Live Photo, 360 Security). Then, we
transformed each APK file into Java code based on the
reverse engineering tools (dex2jar22 and jd-gui23). Finally,
we manually inspected the defects in these 20 apps found by
IMGDroid, and confirmed that the detected defects are true
positives. Moreover, we did not manually find other image
loading defects in the 20 apps. With this, we assume that
IMGDroid performs well on all the 1,000 apps and the answer
to RQ3 is trustworthy.

Answer to RQ3: Surprisingly, there are totally 5,471 image
loading defects found in the 865 of the 1,000 Android apps.
Only 32 apps that involve image loading operations do not
have such defects. For the 865 apps, each app has on average
6.32 image loading defects.
Implication: Image loading defects are common and severe
in real-world commercial apps. Such defects have not gained
extensive attention from the app developers.

22https://sourceforge.net/projects/dex2jar
23http://jd.benow.ca



TABLE IV
EMPIRICAL RESULTS ON 1,000 RANDOMLY SELECTED ANDROID APPS

Framework #Apps that use #Defects of AP1 #Defects of AP2 #Defects of AP3 #Defects of AP4 #Defects of AP5
Android native APIs 854 178 2,418 145 310 2,158

Picasso 78 0 255 0 0 0
Glide 83 0 3 2 0 0

Universal-Image-Loader 45 0 2 0 0 0
Fresco 0 - - - - -

The answer to RQ3 implies that many developers are not
aware of the inefficient programming practices relevant to
image loading (i.e., anti-patterns 1-5), or at least they do not
take such defects seriously. The performance and quality of the
apps may be easily undermined when the developers despise
such defects.

Answer to RQ4: The numbers (proportions) of defects of
Anti-pattern 1-5 in the 1,000 apps are 178 (3.25%), 2,678
(48.95%), 147 (2.69%), 310 (5.67%), and 2,158 (39.44%),
respectively.
Implication: Image decoding without resizing (Anti-
pattern 2) is the dominant (the severest) kind of image
loading defects in practice, whereas local image loading
without permission (Anti-pattern 3) is the least common kind
of image loading defects.

The reason why the number of the defects of Anti-patterns 1
and 3 are small is that such defects are relatively easy to trigger
app crashes, and thus are more likely to be manifested before
on the market. Since the defects of Anti-patterns 2, 4, and 5
do not immediately lead to app crashes, developers may not
find them.

Answer to RQ5: Among the 854 apps that use Android
native APIs for image loading, 5,209 image loading defects
are found; among the 78 apps that use Picasso, 255 such
defects are found; among the 83 apps that use Glide, 5 such
defects are found; among the 45 apps that use Universal-
Image-Loader, only 2 such defects are found.
Implication: The usage of Android native APIs has the
highest possibility to involve image loading defects, whereas
the usage of Universal-Image-Loader has a lowest
possibility to involve image loading defects (Fresco is not
considered here).

The answer to RQ5 indicates that although Android native
APIs are encouraged to be used in app development, they
are more easily to be used improperly, and thus more likely
to introduce image loading defects. On the other hand, the
third-party image frameworks such as Universal-Image-
Loader can be used conveniently with a relatively low chance
to involve image loading defects.

C. Threats to Validity

In this part, we discuss the major threats to validity of our
experimental results.

Construct validity. We use 21 open-source apps with 45
known image loading defects to evaluate the effectiveness

and efficiency of our approach IMGDroid. The threats to
construct validity come from the following two aspects. First,
these 45 defects are all relevant to the use of Android native
APIs, and their distribution over the five categories of image
loading defects (i.e., Anti-pattern 1-5) is not balanced (i.e., the
number of known defects of Anti-pattern 1 and Anti-pattern 3
is relatively small). Second, since TAPIR is not publicly
available, to compare IMGDroid with TAPIR, we only use
its reported results on the first 10 apps in Table III from their
paper [3]. With the same reason, we also cannot compare the
runtime overhead of the two approaches. Consequently, the
comparison between IMGDroid and TAPIR is insufficient.

External validity. Although IMGDroid successfully re-
discovers the 45 defects in the 21 open-source apps and
additionally finds 15 previously-unknown defects which are
manually confirmed, it does not indicate that IMGDroid does
not yield false positives in practice; for instance, IMGDroid
may report false positives in dead code. Moreover, the 21 apps
are not so complicated, and few of them utilize third-party
image frameworks. Therefore, when IMGDroid is applied to
large commercial Android apps, the experimental results and
conclusion in Section IV-A may not be generalized to those
commercial apps.

V. RELATED WORK

In this section, we review related work on analyzing the
performance issues in Android apps.

A. Image Loading Inefficiency Analysis

We first concentrate on the related work on analyzing
the performance issues of image loading and displaying in
Android apps [27], [2], [1], [3].

Wang and Rountev [27] propose an analysis method that
characterizes the response time as a function of the size
of potentially expensive resources (eg, bitmaps). By scaling
these resources, they get a responsiveness profile for each
GUI-related callback. Based on the evaluation, although they
conclude that many operations could be safely left in the main
thread, they also show that the response time of image loading
increases significantly as the image size increases.

Carette et al. [2] employ their tool HOT-PEPPER to
investigate the impact of three picture smells (bad picture
format, compression, and bitmap format) in some sample
Android apps, and find that large pictures consume a lot of
memory and may severely affect the performance of Android
apps. They also find that the use of optimized JPG pictures



with the Android default bitmap format is the most energy-
efficient combination in Android apps.

Liu et al. [1] develop a static analysis to detect performance
defects in Android apps. However, their approach is not
focused on image loading and can only find one type of image
loading defects, i.e., loading images in the UI thread.

The recent study by Li et al. [3] is most relevant to
our work. The authors first conduct an empirical study to
summarize several anti-patterns of inefficient image displaying
in Android apps. Based on the anti-pattern rules (lacking the
full path sensitivity), they implement a light-weight static
analyzer, TAPIR, to automatically detect instances of such
anti-patterns. Compared with their study, we go further by
considering another two anti-patterns of image loading that
can significantly degrade the performance and quality of
apps, including Anti-patterns 1 and 3. Besides Android native
APIs, we also consider four popular third-party image frame-
works, including Universal-Image-Loader, Picasso,
Glide, and Fresco, and our tool IMGDroid can find image
loading defects of the code written by both the Android native
APIs and the image frameworks.

B. App Energy Defect Analysis

Since energy is a major concern in app performance analysis
and green software engineering [28], [29], [30], energy defects
in Android apps receives a significant attention [31], [32], [33],
[34], [35], [36], [37].

Lots of work focuses on the energy (performance) defects
caused by the improper use of different hardware resources
(e.g., CPU, screen, GPS, sensors, camera, etc.) in Android
apps [31], [32], [38], [34], [39], [36]. Some work uses static
analysis to detect these energy defects. For example, a static
analysis approach is proposed to detect GUI-related energy-
drain defects relevant to the use of energy-intensive resources
(e.g., GPS) [34]. Pathak et al. [31] study the so-called no-sleep
bugs that arise from the mis-handling power control Android
APIs that use different resources of the mobile device. Their
tool uses the reaching definition analysis to detect the no-sleep
bugs. Wu et al. [39] point out that missing release operations
on the requested resources could lead to app performance
degradation or even system crash, and they develop a static
analyzer Relda2 for detecting such resource leak.

Other work uses testing and dynamic analysis to detect
such energy defects. For instance, based on the measure-
ment of the power consumption, Banerjee et al. [16] present
a testing approach to detecting energy defects in Android
apps. However, the testing approach is expensive and time-
consuming, because it has to measure the power consumption
at runtime. To reduce the testing cost, Jabbarvand et al. [40]
propose an approach to minimizing the test suite for detecting
energy defects. GreenDroid [38] is a dynamic analyzer that
can automatically diagnose energy defects caused by missing
deactivation of sensors or wake locks and cost-ineffective
use of sensory data. Banerjee et al. [36] then go further by
combining both static and dynamic analysis. They develop a
framework EnergyPatch to detect, validate, and repair energy

defects on the use of energy-intensive resources (e.g., GPS,
Wifi). Recently, Jabbarvand et al. [41] present a search-based
testing framework COBWEB for energy testing of Android
apps. COBWEB utilizes a set of novel models which consider
the execution context to generate tests which can effectively
manifest energy defects.

Besides resource (hardware) usage, bad programming prac-
tices and particular API usage patterns can also result in
energy defects. Based on a hardware power monitor, Vásquez
et al. [42] mine and analyze energy-greedy APIs, and point out
that some anomalous energy consumption is due to suboptimal
usage or choice of APIs. Since apps may still consume energy
when running in the background, Chen et al. [33] measure and
quantify the amount of battery drain by background activities.
They present a system HUSH to suppress background activ-
ities without impacting the user experience. Song et al. [37]
summarize four types of service usage inefficiencies in An-
droid apps that could lead to unexpected energy consumption,
including premature create, late destroy, premature destroy,
and service leak. They develop a static analyzer ServDroid
that can efficiently detect such service usage inefficiencies.

C. App Performance Issue Analysis

We finally review the studies that focus on other important
performance issues (e.g., app response delay, GUI lagging) in
Android apps [1], [43], [22].

GUI responsiveness. Liu et al. [1] conduct an empirical
study on 70 real-world performance issues and summarize
three major types of performance defects in Android apps,
including GUI lagging, energy leak, and memory bloat. They
implement a static analyzer, called PerfChecker, to detect
the identified performance defects. Similar tools include PA-
PRIKA [18] and ADOCTOR [19]. Yang et al. [44] insert
an artificial long delay at typical problematic operations to
test whether the app could exhibit poor GUI responsiveness.
To improve GUI responsiveness, Lin et al. [17] design a
tool that enables developers to extract long-running opera-
tions into asynchronous tasks. Considering that UI-triggered
asynchronous tasks can still impact GUI performance, Kang
et al. [26] develop a tool DiagDroid for Android GUI perfor-
mance diagnosis. DRAW [45] is designed to diagnose short
delays caused by app GUI rendering, which can pinpoint the
responsible GUI components and the rendering operations.

Response delay. Mantis et al. [46] combines program
analysis and machine learning to estimate the execution time
of Android apps under given inputs. Ravindranath et al. [15]
develop a system, called AppInsight, to instrument app bi-
naries to automatically identify the critical path (e.g., slow
execution paths) in user transactions. ShuffleDog [47] is
developed to identify all delay-critical threads that lead to the
slow response of user interactions. Zhao et al. [23], [48] reduce
the network latency by prefetching and caching HTTP requests
in Android apps. There are also other studies that reduce the
app response delay by optimizing the app code [49], [50].



VI. CONCLUSIONS

Android apps often employ images to fulfil their functional-
ities and to improve user experience. App developers can use
Android native SDK or third-party image frameworks to load
and display pictures in their apps. However, since images are
usually very big, if they are not properly loaded or processed,
the performance and quality of the apps can be degraded
severely. In this paper, based on Android developers and the
issue reports of real-world apps, we have reviewed and sum-
marized the improper programming practices in image loading
and displaying, and formulated five anti-patterns of image
loading defects. We have also presented IMGDroid, a scalable
static analysis technique to automatically detect such defects
based on these anti-patterns. Our experimental evaluation on
a benchmark of 21 open-source Android apps demonstrates
both the effectiveness and efficiency of IMGDroid, and our
empirical study on 1,000 commercial Android apps based on
IMGDroid shows that image loading defects are common in
practice, which should be noticed by the practitioners.

To complement static analysis, the future work could be fo-
cused on the dynamic techniques that manifest image loading
defects in Android apps.
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