
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

UAFSan: An Object-Identifier-Based Dynamic Approach for
Detecting Use-After-Free Vulnerabilities

Anonymous Author(s)

ABSTRACT
Use-After-Free (UAF) vulnerabilities constitute severe threats to
software security. In contrast to other memory errors, UAFs are
more difficult to detect through manual or static analysis due to
pointer aliases and complicated relationships between pointers and
objects. Existing evidence-based dynamic detection approaches
only track either pointers or objects to record the availability of ob-
jects, which become invalid when the memory that stored the freed
object is reallocated. To this end, we propose an approach UAFSan
dedicated to comprehensively detecting UAFs at runtime. Specifi-
cally, we assign a unique identifier to each newly-allocated object
and its pointers; when a pointer dereferences a memory object, we
determine whether a UAF occurs by checking the consistency of
their identifiers. We implement UAFSan in an open-source tool and
evaluate it on a large collection of popular benchmarks and real-
world programs. The experiment results demonstrate that UAFSan
successfully detect all UAFs with reasonable overhead, whereas
existing publicly-available dynamic detectors all miss certain UAFs.

CCS CONCEPTS
• Security and privacy→ Software and application security; •
Theory of computation→ Program analysis; • Software and
its engineering→ Software defect analysis.

KEYWORDS
Use-After-Free (UAF), double-free, instrumentation, dynamic anal-
ysis, object identifier

ACM Reference Format:
Anonymous Author(s). 2021. UAFSan: An Object-Identifier-Based Dynamic
Approach for Detecting Use-After-Free Vulnerabilities. In Proceedings of
ISSTA’21, 12-16 July, 2021, Aarhus, Denmark. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Once a memory object is released, all pointers to the freed memory
object become dangling pointers [8, 13, 45, 53, 58]. If any of these
dangling pointers is dereferenced to access the data, then a Use-
After-Free (UAF) vulnerability occurs. Similarly, using any of these
dangling pointers to release the heap memory results in a double-
free vulnerability, which is regarded as a special case of UAF.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/21/07. . . $15.00
https://doi.org/10.1145/1122445.1122456

As shown in Figure 1, the number of UAFs and double-frees in
NVD1 increases almost every year since 2009. Moreover, most UAFs
in NVD are rated as critical or high in severity, which is prone to
cause program crashes, silent data leakage, arbitrary code execu-
tion, and other serious consequences [43, 56]. Meanwhile, in recent
years, memory corruption attacks exploiting UAFs have increased
dramatically [25, 51]. In contrast to other memory errors, UAFs in
large real-world programs are difficult to detect through manual
or static analysis for the following reasons. First, it is difficult to
infer all pointer aliases across many data structures. Second, it is
challenging to determine which memory object a pointer points
to. Last but not least, the path explosion caused by the increase of
program size makes inter-procedural analysis rather difficult.

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
0

50
100
150
200
250
300
350
400
450

 double-free
 use-after-free

Figure 1: Use-After-Frees and double-frees in NVD

Due to the aforementioned challenges, there are only a few stud-
ies on static analysis for UAF detection, e.g., GUEB [18], Tac [55],
and CRed [56]. These approaches first transform the target pro-
gram into an intermediate representation, based on which they
perform inter-procedural analysis to track heap operations and
pointer propagation while considering pointer alias. They then use
the obtained pointer aliases and the points-to relationships between
pointers and objects to detect UAFs. Although these static analysis
approaches have higher code coverage, they only perform lim-
ited inter-procedural analysis and incomplete pointer analysis [47].
Thus, they may generate false positives and false negatives.

The lion’s share of attention is focused on the dynamic detection,
which falls into two categories: evidence-based approaches [7, 10,
16, 19, 28, 30, 32, 35, 40–42, 46] and prediction-based approaches [9,
22, 30]. The evidence-based approaches [7, 10, 16, 19, 28, 32, 35, 40–
42, 46] only track pointers or objects. When a pointer is derefer-
enced, they use the pointer (object) address to query their auxiliary
data structures to determine whether the pointer to an alive object.
If not, a UAF is detected. However, if the accessed memory is re-
allocated, this UAF may be missed. In our analysis of 34 UAFs on
21 real-world programs (cf. Section 4.2), 41.2% (14/34) UAFs are re-
lated to memory reallocation, out of which at least 28.6% (4/14) are
missed by existing publicly-available evidence-based approaches.

The prediction-based approaches [9, 22, 30] can predict con-
current UAFs introduced by thread scheduling in multi-threaded

1https://nvd.nist.gov/

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

programs, while UAFs in sequential programs go beyond their mod-
els [30]. In this paper, we only consider UAFs on the heap while
those on the stack are ignored because they are rare [57] and hard to
exploit [25]. In addition, we focus on evidence-based UAF detection
in sequential C/C++ programs.

To address the limitation of existing evidence-based dynamic
detectors (sanitizers), we propose a novel dynamic detector UAF-
San. A salient merit of UAFSan is that its detection capability is not
affected in the presence of memory reallocation. UAFSan achieves
this by checking whether the pointer still points to its intended
alive object. Specifically, for each newly-allocated object, UAFSan
assigns it a unique identifier, which is also recorded as an attribute
of each pointer to the object. Once the object is freed, UAFSan
will invalidate the object identifier with the object, while the ob-
ject identifier with its pointers remains unchanged. Thus, when
a memory object is deallocated, or even when the freed memory
is reallocated, UAFSan can accurately detect the UAF that occurs
because the object identifier with the pointer does not match that
with the memory object to which the pointer currently points.

We have implemented UAFSan on top of the LLVM infrastruc-
ture [24]. The experimental evaluation on popular benchmarks
and real-world programs shows that UAFSan outperforms eight
publicly-available evidence-based dynamic detectors [7, 16, 19, 28,
32, 35, 40–42] in terms of the number of UAFs detected.

The contribution of this paper is summarized as follows:
(1) We propose a novel evidence-based techniqueUAFSan, which

is dedicated to comprehensively detecting UAFs including
double-frees in C/C++ programs.

(2) Based on LLVM compiler infrastructure [24], we implement
UAFSan into an open-source tool2.

(3) Our experimental evaluation on real-world programs shows
that UAFSan can accurately detect UAFs at runtime. In addi-
tion, UAFSan finds certain UAFs missed by existing dynamic
detectors and those UAFs can be exploited by attackers.

The remainder of this paper is organized as follows. Section 2
uses a running example tomotivate our work. Section 3 presents our
approach UAFSan. Section 4 conducts the experimental evaluation
and comparison. Section 5 reviews the related work and Section 6
concludes the paper.

2 MOTIVATION
In this section, we use a motivating example to show the limitation
of existing evidence-based approaches, and also to illustrate how
our approach detects UAFs and overcomes this limitation.

Figure 2(a) shows a C program that involves both UAF and
double-free vulnerabilities on the heap. In the program, both point-
ers p and q become dangling pointers after the object obj1 is freed
at Line 4. A UAF occurs at Line 6 because the freed object obj1 is ac-
cessed via pointer q. A double-free occurs at Line 7 because obj1 is
freed again viaq. In some cases, a subtle UAF occurs at Line 8, which
needs to be explained in combination with Figure 2(b). Figure 2(b)
presents the two possible memory layouts for the program in Fig-
ure 2(a) at runtime. As shown on the right scenario of Figure 2(b), if
memory reallocation occurs, another object obj2 may be allocated
on the deallocated memory where the object obj1 was stored, that
2https://figshare.com/s/d121faab3226633549e6

int main(){
 int *p = malloc(40); /*allocate obj1*/
 int *q = p; /*pointers p and q both point to obj1*/
 free(p); /*free obj1*/

 int *r = malloc(40); /*allocate obj2*/
 *q = 1;
 free(q); /*free obj1*/

 *r = 1;
}

1

2

3

4

5

6

7

8

9

(a) A program written in C

after Line 4

heap space

obj1

obj2

obj1

obj1

obj2obj1

after Line 2

after Line 5

after Line 7

after Line 4

heap space

obj1

obj2

obj1

obj2

after Line 2

after Line 5

after Line 7

(b) Memory reallocation does not occur and occurs.

Figure 2: A motivating example.

is, obj2 uses the same heap address that obj1 has used before. Then,
the pointer r implicitly becomes a dangling pointer after Line 7,
because when q is used to free obj1, obj2 is freed instead.

Existing evidence-based approaches, such as CETS [32] and
ASan [40], only track either pointers or objects to record the avail-
ability of objects, but do not distinguish different objects successively-
allocated on the same address. When the pointer is dereferenced,
they use the pointer (object) address to query their auxiliary data
structure to determine whether the accessed memory is currently
allocated. If the accessed memory is freed but not reallocated, they
can find the UAFs. If the freed memory is reallocated (cf. the right
scenario of Figure 2(b)), the UAFs can bemissed by these approaches.
To address this issue, most existing evidence-based approaches de-
lay memory reallocation by using a quarantine, thereby reducing
the chance of UAF detection failures. Unfortunately, this mecha-
nism cannot essentially overcome the limitation of the existing
pointer (object)-based approaches. Therefore, they still miss certain
UAFs that can be exploited by attackers through some ways [14, 48],
causing serious consequences such as arbitrary code execution [2].

To this end, we propose a novel dynamic detectorUAFSan, which
can track pointers and objects to accurately and comprehensively
detect UAFs, and its detection ability is not affected by memory
reallocation. Specifically, UAFSan assigns a unique identifier to
each newly-allocated memory object and propagates the object
identifier to all pointers to the memory object. Once the memory
object is freed, UAFSan will only invalidate the object identifier
with the memory object, while keep the object identifiers of its
pointers unchanged. In this way, UAFSan can detect the UAF that
occurs by matching the object identifier of the pointer and that of
the memory object to which the pointer currently points.

We use the program in Figure 2(a) to explain the rationale of
UAFSan. After obj1 is allocated on the heap, UAFSan assigns it
a unique identifier, say obj1_id . Since the pointers p and q both

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

UAFSan: An Object-Identifier-Based Dynamic Approach for Detecting Use-After-Free Vulnerabilities ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

source
code heap function

replacement
pointer

profiling

binary
program

report diagnostic
information

heap object
manager

pointer
tracker

memory
access

checker

pointer
meta-data

object
meta-data

compile-time instrumentation

runtime library

compile-time phase

runtime phase

target C/C++
program

memory
check

Figure 3: Framework of UAFSan.

point to obj1, obj1_id is also recorded as an attribute of p and q.
When obj1 is freed via pointer p at Line 4, UAFSan invalidates
obj1_id with obj1, and the object identifier of obj1 becomes to
invalid_obj1_id . Meanwhile, p and q still retain obj1_id . Similarly,
for another heap allocation at Line 5, UAFSan assigns another
unique identifier obj2_id to the newly-allocated object obj2 and
propagates obj2_id to the pointer r . As shown in Figure 2(b), there
are two possible memory layouts for the program in Figure 2(a)
when the UAF occurs during program execution.

(1) If the freed memory is not reallocated, the current object
to which q points is an invalid object obj1. UAFSan can
detect the two UAFs at Lines 6 and 7, because the object
identifier obj1_id with q does not match the object identifier
invalid_obj1_id with obj1.

(2) If the freed memory is reallocated, the current object to
which q points becomes to obj2. UAFSan can detect the three
UAFs at Lines 6, 7 and 8, because the object identifier obj1_id
with q does not match the object identifier obj2_id with
obj2, and obj2_id with r does not match the invalid object
identifier with obj2.

Therefore, UAFSan can accurately and comprehensively detect
UAFs in programs and is not affected by memory reallocation.

3 UAFSAN
In this section, we elaborate on how UAFSan is designed. Figure 3
overviews UAFSan, which combines compile-time instrumentation
and a runtime library. In the compile-time phase (cf. Section 3.2),
UAFSan takes the program source code as its input, and outputs
an instrumented program. Specifically, the program source code
is first compiled into LLVM intermediate representation (IR) [24].
Then, UAFSan instruments the IR code to replace the original heap
functions with our wrapper functions, profile the pointer meta-data,
and check memory access to determine UAFs.

In the runtime phase, the three components provided by the run-
time library interact with the code we instrument. The heap object
manager (cf. Section 3.3) is responsible for allocating and releasing
heap objects. Meanwhile, it manages the meta-data of heap objects,
and records the current call stack when a heap object is allocated
or released. The pointer tracker (cf. Section 3.4) tracks pointers on
the entire memory and manages the meta-data of these pointers. It

Primary Table

Secondary Table

23bits 22bits

Memory Address

root pointer
Secondary Table

. . .

. . .

3bits

45 bits we use

16bits

Figure 4: Meta-data organization in the form of two-level
lookup table.

first uses the meta-data of the current heap object pointed to by the
original pointer to initialize the meta-data of the original pointer,
and then propagates the meta-data of the original pointer to all its
derived pointers. The memory access checker (cf. Section 3.4) con-
sists of two parts: double-free detection when memory objects are
released and UAF detection when pointers are dereferenced. Both
of the two parts use the meta-data of the pointer and the meta-data
of the memory object to which the pointer currently points.

3.1 Supporting Data Structures
We first explain how to store and retrieve object meta-data and
pointer meta-data before elaborating on their structures, and then
introduce the interfaces defined to facilitate instrumentation.

The most intuitive way to associate meta-data with objects or
pointers is to use embedded meta-data, which puts meta-data and
data together and thus avoids the overhead of looking up the meta-
data. However, this mechanism changes the structure of pointers
and objects and thus may cause serious compatibility issues. Hence,
the meta-data should be stored separately. As presented in Figure 4,
the lookup table we use has two levels, including one primary table
and multiple secondary tables. Each entry in the primary table
stores a pointer to the starting address of a secondary table, while
each entry in the secondary table stores the meta-data of an object
or a pointer. When the instrumented program begins to run, to
ensure that there is no address overlap for storing pointer meta-
data and object meta-data, UAFSan allocates two lookup tables to
store object meta-data and pointer meta-data, respectively. The
returned root pointer to the primary table of each lookup table is
maintained as a global variable. The reason why we choose the
two-tier lookup table is that it can facilitate lookup and reduce
memory consumption. The primary table is allocated only once
and each secondary table is allocated only when needed, which
significantly reduces the virtual memory requirement of UAFSan.
In addition, the real physical memory consumption is usually much
smaller than the virtual memory consumption.

For each heap object, we regard the starting address of the heap
object as its object address and use that to find the position to store
its meta-data. For each pointer, we use its memory address (that is,
the address of the pointer) to find the position to store its meta-data.
Thus, we maintain only one meta-data instance for each pointer or
object in its corresponding lookup table. Moreover, for heap objects
and pointers, the way to locate their corresponding meta-data is

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

pointer q

obj1_id

obj1_id obj1_addrobj1

pointer p

obj1_id

obj1

meta-data points-to relationships

pointer q

pointer p

data

obj1_addr

obj1_addr

Figure 5: Points-to relationships and themeta-data informa-
tion.

similar. Generally, the memory address of a heap object is 64 bits on
a 64-bit computer, while the first 16 bits and the last three bits are
all zero. This also applies to pointers. For each heap object (pointer),
its memory address is unique, so the unique middle 45 bits can
be used to determine the position for storing the object (pointer)
meta-data in the lookup table. As depicted in Figure 4, among the
45 bits we use, the value of the first 23 bits corresponds to the array
index in the primary table; the value of the next 22 bits corresponds
to the array index in the secondary table.

For pointer meta-data and object meta-data, they share the same
data structure and include two attributes. In our implementation,
the two attributes are both eight bytes, which facilitates attribute
access. For each heap object, its meta-data has two attributes: the
object identifier and the memory address of the object. The memory
address is used to indicate whether the identifier of the object is
invalid, i.e., whether the object has been released (cf. Section 3.4).
When a pointer is assigned, the two attributes of the pointer meta-
data store the object identifier and memory address (starting ad-
dress) of the object towhich the pointer points. Thememory address
in the pointer meta-data is used to retrieve the meta-data of the
current object to which the pointer currently points.

Let us return to the example in Figure 2(a). After the object obj1 is
allocated at Line 2, its memory address is obtained, say obj1_addr ;
its identifier obj1_id and its address obj1_addr are stored as its
meta-data. Since pointers p and q both point to the object obj1
after Line 3 and before Line 4, the meta-data of p and q store the
same attributes, namely obj1_id and obj1_addr . Figure 5 shows the
snapshot of points-to relationship and the meta-data information
after Line 3 and before Line 4.

1. // Retrieve the pointer metadata for a pointer
2. POmetadata* POpmd_tbl_lookup(ptr_addr)
3. // Retrieve the object metadata for an object
4. POmetadata* POomd_tbl_lookup(obj_addr)
5. // Initializes the metadata for an original pointer
6. void POpmd_tbl_init_as(&original_ptr, original_ptr)
7. // Initializes or updates the metadata for any derived pointer
8. void POpmd_tbl_init_or_update_as(&derived_ptr, &original_ptr)
9. // Initializes or updates the metadata for an object
10.void POomd_tb1_init_or_update_as(obj_addr, obj_id, obj_addr/NULL)
11.// Record the call stacks
12.void POrcs_tbl_update(obj_id, allocated/freed)
13.// Check memory access through pointers
14.void POcheck_mem_access(pointer, pointer_metadata)

Figure 6: Interfaces defined to facilitate instrumentation.

Figure 6 lists the interfaces defined to facilitate instrumentation.
POmetadata in Figure 6 represents the returned meta-data. For
example, the argument of the function POomd_tbl_lookup() is the

memory address of an object, that is, the value of an original pointer
or the object address in the meta-data of the original pointer and
its derived pointers. A call to this function returns the object meta-
data of the current object to which the pointer currently points.
If a pointer corresponds to a non-zero offset within an object, the
meta-data of this pointer records the starting address of the memory
object, which can be used to retrieve the meta-data of the memory
object the pointer currently points to.

3.2 Compile-time Instrumentation
The compile-time instrumentation includes three aspects:

(1) The original heap allocation and deallocation functions (e.g.,
malloc(), free()) are replaced with our wrapper functions
such that the heap object manager can manage the meta-data
of heap objects at runtime.

(2) Before and/or after the instructions related to pointer prop-
agation, specific tracking code is instrumented to interact
with the pointer tracker at runtime.

(3) Certain memory checks are instrumented before the instruc-
tions related to accessing memory objects through pointer
dereference.

Heap function replacement. To facilitate UAF detection, we
need to monitor and modify function calls related to heap functions
in the program, which is a common practice of almost all existing
dynamic detection approaches [7, 19, 28, 32, 35, 40–42, 46]. There
are two ways to achieve this: wrapping and replacing. Wrapping
allows the original heap functions to execute, but it adds a prologue
and epilogue where certain code is added to monitor the heap
allocations and deallocations. Replacing uses custom heap functions
and does not execute any of the original heap functions. We choose
to wrap the original heap functions to add some code that manages
the meta-data of the heap objects at runtime.

Specifically, we need to find all function calls related to heap
operations in the program, and replace them with calls to our imple-
mented wrapper functions. We find that the custom heap functions
in the original program are wrappers of the standard C/C++ heap
functions. Therefore, we only need to replace the function calls to
the original heap functions with the calls to our wrapper functions.
Since the function names are preserved in the LLVM IR, we can
find the corresponding function calls through their names.

Figure 7 presents our instrumented program for the program
in Figure 2(a). At Lines 2 and 7 in Figure 7, the two calls to our
function wrapped_malloc() provided by the heap object manager
replace the calls to the function malloc(). Similarly, at Lines 6 and
12, the two calls to our function wrapped_free() replace the calls
to the function free().

Pointer profiling. Once a pointer is assigned, we need to initial-
ize or update the two attributes of the pointer meta-data. We take
the following steps to achieve this. First, we find all original point-
ers in the program and assign the meta-data to them. By checking
whether an instruction is similar to the instruction p = &a, where
a is a stack variable, a global variable, or a dynamically allocated
heap object, we can find all the instructions that assign original
pointers. For each of these instructions, we instrument a call to the
function POpmd_tbl_init_as() into the program to propagate the
meta-data of the object to the original pointer that points to the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

UAFSan: An Object-Identifier-Based Dynamic Approach for Detecting Use-After-Free Vulnerabilities ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

1. int main(){
2. int *p = wrapped_malloc(40); //heap function replacement
3. POpmd_tbl_init_as(&p, p); //pointer profiling
4. int *q = p;
5. POpmd_tbl_init_update_as(&q, &p); //pointer profiling
6. wrapped_free(p); //heap function replacement
7. int *r = wrapped_malloc(40); //heap function replacement
8. POpmd_tbl_init_as(&r, r); //pointer profiling
9. POcheck_mem_access(q, POpmd_tbl_lookup(&q)); //memory check
10. *q = 1;
11. wrapped_free(q); //heap function replacement
12. POcheck_mem_access(r, POpmd_tbl_lookup(&r)); //memory check
13. *r = 1;
14.}

Figure 7: Our instrumented program for the program in Fig-
ure 2(a).

object. The function POpmd_tbl_init_as() has two parameters:
The first one is the address of the original pointer and the second
one is the address of the memory object.

As depicted in Figure 7, there are two original pointers p and r ,
which are initialized at Lines 2 and 7, respectively. Therefore, we
instrument two calls to our function POpmd_tbl_init_as() into
the program at Lines 3 and 8 to initialize the pointer meta-data of
p and r , respectively.

Next, we propagate the meta-data of original pointers to all their
derived pointers. For pointer propagation through pointer assign-
ment including pointer arithmetic, the meta-data of the original
pointers is read first, and then is copied to the meta-data of the
derived pointers. This is implemented in our instrumented function
POpmd_tbl_init_or_update_as(). As presented at Line 5 in Fig-
ure 7, we instrument a call to POpmd_tbl_init_or_update_as()
to propagate the meta-data of p to its derived pointer q.

For pointer propagation through function calls, it is essentially
implicit pointer assignment, but requires special treatment. To this
end, we introduce a shadow stack that mirrors the call stack to
propagate the meta-data of pointers to the derived pointers. If the
actual arguments include pointers, the caller can store the meta-
data of pointers (actual arguments) into the shadow stack such
that the callee can obtain this information just as it obtains actual
arguments (pointers). If the return value is a pointer, the callee
can also store the meta-data of the pointer into the shadow stack
such that the caller can obtain this information just as it obtains
the return value. In our implementation, we first instrument code
before the call site to store the meta-data of the pointer arguments
into the shadow stack. Then, we instrument the function body to
retrieve the meta-data of the input pointers from the shadow stack,
and to store the meta-data of the return value (pointer) into the
shadow stack. We also instrument code after the call site to retrieve
the meta-data of the return pointer from the shadow stack.

Memory check. We first find all instructions related to pointer
dereference by analyzing whether the memory is accessed through
pointers. Then, we instrument calls to our implemented function
POcheck_mem_access() to detect possible UAFs during program
execution. As depicted in Figure 7, we instrument two calls to our
function POcheck_mem_access() at Lines 9 and 12 because the
pointers p and r are dereferenced at Line 10 and 13, respectively.
Since our work focuses on the UAFs on the heap, there is no need to
instrument memory checks when pointers dereference to non-heap
objects. Therefore, we conduct a static intra-procedural backward

1. void * wrapped_malloc(size){
2. void *ptr = malloc(size);
3. size_t obj_id = unique_id++;
4. POomd_tb1_init_or_update_as(ptr, obj_id, ptr);
5. POrcs_tbl_update(obj_id, allocated);
6. return ptr;
7. }

Figure 8: An illustration of heap allocationmanagement: the
wrapper function wrapped_malloc(size) of malloc(size).

data-flow analysis to identify pointers to non-heap objects, and
avoid instrumenting memory checks when such pointers are deref-
erenced. Specifically, given a memory object pointed to by the
pointer, we find the instruction that creates this object from which
we can determine whether the memory object is a non-heap object.
Since the static analysis performed is conservative, we may still
instrument some memory checks when pointers dereference to
non-heap objects.

3.3 Heap Object Manager
The heap object manager consists of three parts: heap allocation
management, heap deallocationmanagement, and heap reallocation
management. Before introducing these three parts, we first discuss
how to generate object identifiers for heap objects.

Initialization. In our approach, every allocated heap object is
assigned a unique object identifier, which is an non-negative integer.
All pointers to the same object inherit the identifier of the object.
We use the following rules to assign object identifier to non-heap
objects and their pointers:

(1) “Zero” is assigned as the object identifiers of null pointers or
pointers returned from thirty-party functions whose source
code is unavailable.

(2) “One” is assigned to pointers to global variables that always
exist during program execution, e.g., static variables and
constants.

(3) “Two” is assigned to pointers to stack variables that exists
only if the stack frame is valid.

The reason why we also assign identifiers to non-heap objects is
that the static backward data flow analysis used at compile-time to
eliminate unnecessary memory checks (cf. Section 3.2) is conser-
vative and intra-procedural. Thus, we further leverage the object
identifier of the pointer to avoid unnecessary memory checks when
pointers dereference to non-heap objects at runtime.

For heap objects, we use a static variable named unique_id as a
counter and increase it each time to generate a new unique identifier
for each newly-allocated heap object. The variable unique_id is
initialized to “three”. There is no need to worry about the situation
where the unique identifier are used up because its length is eight
bytes and thus a sufficient number of identifiers can be generated.

Heap allocation management. There are several heap alloca-
tion functions provided by the C and C++ languages, i.e., malloc(),
calloc(), mmap(), operator new(), and operator new[](). Our
wrapper functions for these heap allocation functions are similar. As
an illustration, Figure 8 presents the heap allocation management in
the wrapper function wrapped_malloc(size) of malloc(size):

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

1. void wrapped_free(ptr){
2. POcheck_mem_access(ptr, POpmd_tbl_lookup(&ptr));
3. //the value of ptr is the object address
4. POmetadata *obj_metadata = POomd_tbl_lookup(ptr);
5. POomd_tb1_init_or_update_as(ptr, obj_metadata->obj_id, NULL);
6. POrcs_tbl_update(obj_metadata->obj_id, freed);
7. free(ptr);
8. }

Figure 9: An illustration of heap deallocation management:
the wrapper function wrapped_free(ptr) of free(ptr).

1. void * wrapped_realloc(ptr, size){
2. POcheck_mem_access(ptr, POpmd_tbl_lookup(&ptr));
3. POmetadata *old_obj_metadata = POomd_tbl_lookup(ptr);
4. POomd_tb1_init_or_update_as(ptr, old_obj_metadata->obj_id, NULL);
5. POrcs_tbl_update(old_obj_metadata->obj_id, freed);
6. ptr = realloc(ptr, size);
7. size_t obj_id = unique_id++;
8. POomd_tb1_init_or_update_as(ptr, obj_id, ptr);
9. POrcs_tbl_update(obj_id, allocated);
10. return ptr;
11.}

Figure 10: An illustration of heap reallocation manage-
ment: the wrapper function wrapped_realloc(ptr,size) of
realloc(ptr, size).

(1) The wrapper function wrapped_malloc() calls the heap al-
location function malloc() to allocate a heap object, and
obtains a pointer ptr to the newly-allocated heap object.

(2) It obtains a unique identifier which is assigned to this newly-
allocated heap object and then increases unique_id.

(3) It stores the object identifier and object address (starting
address) as object meta-data in the lookup table by calling
the function POomd_tb1_init_or_update_as().

(4) It records the current call stack to facilitate the diagnosis.
(5) It returns the pointer ptr .
Heap deallocation management. The heap deallocation func-

tions provided by standard C and C++ languages include free(),
unmmap(), operator delete(), and operator delete[](). Our
wrapper functions for these heap deallocation functions are similar.
As an illustration, Figure 9 presents the heap deallocation manage-
ment in the wrapper function wrapped_free(ptr) of free(ptr):

(1) The wrapper function wrapped_free() calls our memory
check function POcheck_mem_access() to determinewhether
a UAF (double-free) occurs (cf. Section 3.4).

(2) It uses the object address to retrieve the object meat-data of
the current object from the lookup table.

(3) It invalidates the object identifier with the current object by
changing the object address in the object meta-data of the
current object to NULL.

(4) It records the current call stack to facilitate the diagnosis.
(5) It calls the original heap deallocation function free() to

release memory object.
Heap reallocationmanagement. If the program calls the heap

reallocation function, i.e., realloc(), there are four possible cases:
(1) The function call only allocates a memory object.
(2) The function call only releases a memory object.
(3) The function call only changes the memory range of the

existing object, not the starting address of the object.

1. void POcheck_mem_access(ptr, POpmd_tbl_lookup(&ptr)){
2. if (ptr == NULL) return;
3. POmetadata* ptr_metadata = POpmd_tbl_lookup(&ptr);
4. if (ptr_metadata->obj_id == 0 || ptr_metadata->obj_id == 1 ||
 ptr_metadata->obj_id == 2)
5. return;
6. POmetadata *obj_metadata = POomd_tbl_lookup(ptr_metadata->obj_addr);
7. if (obj_metadata->obj_address == NULL || obj_metadata->obj_id !=
 ptr_metadata->obj_id)
8. reportUAFError(ptr_metadata->obj_id);
9. }

Figure 11: An illustration of UAF detection.

(4) The function call first allocates a new object, then copies
the contents of the old object to the new object, and finally
releases the old object.

For the first and second cases, the code in our wrapper function of
realloc() is similar to that in Figure 8 and Figure 9, respectively.
For the third case, similar to the existing approaches [51, 53], we
do not need to instrument any instructions, because the mem-
ory object still exists. The last case corresponds to the combi-
nation of object allocation and deallocation. Figure 10 presents
the code snippet to handle the last case in the wrapper function
wrapped_realloc(ptr,size) of realloc(ptr, size). Accord-
ing to Linux programmer’s manual, we differentiate the four cases
of heap reallocation through the actual arguments and return value
of the function call, which is implemented in our wrapper function.

3.4 Pointer Tracker and Memory Access
Checker

At runtime, the pointer tracker manages the meta-data of the created
pointers by interacting with the tracking code we instrumented.
Specifically, if an original pointer is created, its meta-data is initial-
ized with the meta-data of the object to which the pointer points.
If its derived pointers are created, no matter how complicated, they
directly or indirectly inherit the meta-data of the original pointer.
For p=malloc(8) and q[i+2]=p, p and q[i + 2] point to the same
object, so q[i + 2] inherits the meta-data of p. Therefore, during
program execution, the meta-data of the original pointer and all its
derived pointers record the same attributes.

Once a memory object is accessed or released, thememory access
checker determines whether a UAF occurs by matching the object
identifier with the pointer and that with the current object to which
the pointer currently points.

(1) If the memory object is still alive, the object address in the
object meta-data is not NULL, and the object identifier in
the object meta-data is equal to the object identifier of the
pointer. In this case, there is no UAF.

(2) If the freed memory is not reallocated, the object address
in the object meta-data is NULL, which indicates the object
identifier with current object is invalid. Thus, the object
identifier in the current object meta-data does not match the
object identifier of the pointer. In this case, a UAF is detected.

(3) If the freed memory is reallocated, although the object ad-
dress in the object meta-data is not NULL owing to memory
reallocation, the object identifier in the current object meta-
data is not equal to the object identifier of the pointer. In this
case, a UAF is detected.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

UAFSan: An Object-Identifier-Based Dynamic Approach for Detecting Use-After-Free Vulnerabilities ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Thus, no matter whether the freed memory is reallocated, UAFSan
can detect UAFs including double-frees in programs.

Figure 11 presents the code we instrument for detecting UAFs
and double-frees:

(1) POcheck_mem_access() checkswhether the pointer is a null
pointer. If so, the function returns directly.

(2) It obtains the object identifier with the pointer, based on
which it determineswhether the pointer points to a non-heap
object. If the object identifier with the pointer is “zero”, “one”,
or “two”, the function returns directly. Note that for pointers
returned from functions without being instrumented, the
object identifiers with them are “zero”.

(3) It obtains the object address with the pointer, based on which
it queries the lookup table to obtain the meta-data of the
current object to which the pointer currently points.

(4) It determines whether a UAF or a double-free occurs based on
the consistency between object identifiers. If so, it reports the
diagnostic information about this UAF and then terminates
the program execution.

4 EVALUATION
We have implementedUAFSan based on the LLVM 7.1 [24] compiler
infrastructure. The compile-time instrumentation in UAFSan is
performed on the LLVM IR. Our evaluation aims to answer the
following research questions (RQs).

• RQ1: Effectiveness - Can UAFSan accurately detect UAFs
in the benchmarks and real-world programs? What is its
advantage over existing dynamic detectors?

• RQ2: Performance - What is the runtime overhead and mem-
ory overhead of UAFSan? Is the performance of UAFSan
comparable to that of existing dynamic detectors?

4.1 Experimental Setup
Methodology. To answer RQ1, we first evaluate UAFSan on popu-
lar benchmarks. We further evaluate UAFSan on large real-world
programs with known UAFs, and compare it with eight state-of-the-
art evidence-based dynamic detectors (sanitizers) that are publicly-
available: Valgrind [35], Dr.Memory [7], TSan [41, 42], CETS [32],
EffectiveSan [16], QASan [19], ASan [29] and DoubleTake [8]. To
answer RQ2, we take all the above tools for comparison.

Benchmarks. JTS benchmark3 is a collection of C/C++ pro-
grams with known UAFs, covering various data types and control
flows. We select 960 small C/C++ programs with UAFs or double-
frees from the JTS benchmark. Since the programs in JTS benchmark
do not involve memory reallocation, we adapt them by adding ad-
ditional heap allocations so that the UAFs (including double-frees)
in these programs occur after memory reallocation. In this way, we
obtain another 960 programs, i.e., UAFBench benchmark, to validate
the effectiveness of UAFSan. To further evaluate the effectiveness of
UAFSan and compare it with existing dynamic detectors, we collect
21 large real-world programs from GitHub (cf. Table 2) containing
34 known UAFs and their corresponding proof-of-concepts (PoCs).
We select these real-world programs by considering different cate-
gories, different sizes, and popularity. To answer RQ2, we first use

3https://samate.nist.gov/SRD/testsuite.php/

Table 1: The Effectiveness of UAFSan on JTS and UAFBench

Category Vulns Type Reused Language # Vulns F-measure

JTS

UAF No C 132 100%
UAF No C++ 268 100%

double-free No C 168 100%
double-free No C++ 392 100%

UAFBench

UAF Yes C 132 100%
UAF Yes C++ 268 100%

double-free Yes C 168 100%
double-free Yes C++ 392 100%

Total - - - 1920 100%

the real-world programs in Table 2 to evaluate the performance of
UAFSan and existing dynamic detectors. Since these real-world pro-
grams are not provided with sufficient test suites and some dynamic
detectors do not work well on them (cf. Section 4.2.3), we further use
MiBench benchmark [21] to answer RQ2 more comprehensively.
MiBench benchmark is a free and commercially representative
benchmark used by many previous studies [10, 26, 46]. We select
13 representative programs from the MiBench benchmark.

All experiments were performed under the 64-bit Ubuntu 18.04.4
with 2 quad-core Intel Core i7-7700 CPUs and 16GB memory. All
benchmarks and real-world programs are compiled with “O0” opti-
mization level and are publicly-available4.

4.2 RQ1: Effectiveness
4.2.1 Experiment on JTS and UAFBench. We first use JTS bench-
mark and UAFBench benchmark to validate the effectiveness of
UAFSan. Each program in these two benchmarks consists of 100 to
500 lines of code, and contains only one UAF or double-free. Table 1
summarizes the experimental results, in which the column “Reused”
indicates whether the UAF (double-free) occurs when the program
reallocates the freed memory.

As shown in Table 1, UAFSan successfully detects all 960 UAFs
on the JTS, including 560 double-frees. This indicates that UAFSan
can accurately detect UAFs and double-frees in the programs if
these programs do not reallocate the freed memory. UAFSan also
successfully detects all 960 UAFs on the UAFBench, including 560
double-frees. This implies that UAFSan can still accurately detect
UAFs and double-frees in the programs even when these programs
reallocate the freed memory. Beside, UAFSan does not find other
UAFs, indicating that no false positives are reported. Altogether,
the recall and precision of its analysis are both 100%. Thus, the
F-measure is also 100%.

In summary, the experiments on the benchmarks demonstrate
that UAFSan can accurately and comprehensively detect UAFs and
double-frees in small C/C++ programs.

4.2.2 Experiment on Real-World Programs. We then use 21 real-
world programs containing 34 known UAFs to evaluate the effec-
tiveness of UAFSan and to verify the prevalence of the UAFs that
are relevant to memory reallocation in real-world programs. Table 2
shows the experimental results.

As shown in Table 2, UAFSan successfully detects all 34 known
UAFs (including double-frees) in these 21 real-world programs. In
addition, UAFSan does not report any false positives. Among the
4https://figshare.com/s/fa35ded20e679aa1270b

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: The Detection Results of Different Evidence-based Detectors on 21 Real-World Programs with 34 Known UAFs

Program Version LoC Vulnerabilities Vulns Type Reused UAFSan ASan Valgrind Dr.Memory DoubleTake TSan QASan EffectiveSan CETS
GoHttp - 0.5k CVE-2019-12160 double-free NO

√ √ √ √
× ×

√
×

√

nasm 2.14.02 102k

CVE-2019-8343 UAF No
√ √ √ √

×
√ √ √ √

CVE-2018-20535 UAF Yes
√ √ √ √

×
√ √ √ √

CVE-2018-20538 UAF No
√ √ √ √

×
√ √ √ √

CVE-2017-10686 UAF Yes
√ √ √ √

×
√ √ √ √

binaryen 1.38.22 98k CVE-2019-7703 UAF No
√ √

× × × × × − −

nasm 2.14rc02 101k

CVE-2018-19216 UAF No
√ √ √ √

×
√ √ √ √

CVE-2017-17820 UAF Yes
√ √ √ √

×
√ √ √ √

CVE-2017-17817 UAF Yes
√ √ √ √

×
√ √ √ √

CVE-2017-17816 UAF No
√ √ √ √

×
√ √ √ √

CVE-2017-17814 UAF Yes
√ √ √ √

×
√ √ √ √

CVE-2017-17813 UAF Yes
√ √ √ √

×
√ √ √ √

optipng 0.6.4 100k CVE-2015-7801 double-free Yes
√

×
√ √

×
√

×
√

×

readelf 2.31.1 1781k CVE-2018-20623 UAF Yes
√ √ √ √

×
√ √

× ×

readelf 2.28 1781k CVE-2017-6966 UAF Yes
√ √ √ √ √

×
√

× ×

jpegoptim 1.4.5 23k CVE-2018-11416 UAF No
√ √ √ √

× ×
√ √

×

yara 3.5.0 75k CVE-2016-10211 UAF No
√ √ √ √

×
√

× − ×

CVE-2017-5924 UAF Yes
√ √ √ √

×
√

× − ×

recutils 1.8 43k CVE-2019-6455 UAF No
√ √

× × ×
√

× − ×

jasper 1.900 53k CVE-2015-5221 UAF No
√ √ √ √

×
√ √ √

×

gravity 0.2.8 21k CVE-2017-1000172 double-free Yes
√

× × × × × × × −

mxml 2.12 33k CVE-2018-20005 UAF Yes
√

×
√ √

×
√ √

− −

CVE-2018-20592 UAF No
√

×
√ √

× ×
√

− −

ghostscript 9.20 1693k CVE-2016-7978 UAF No
√ √ √ √

× ×
√

− −

CVE-2016-10217 UAF Yes
√ √ √ √

× ×
√

− −

openh264 1.8.0 143k UAF-issue-1 UAF No
√ √

× × × × × − −

cflow 1.6 50k UAF-issue-2 UAF No
√ √ √ √

× ×
√

× ×

GraphicsMagick 1.3.26 112k UAF-issue-3 UAF No
√ √ √

× × ×
√

× −

yasm 1.3.0 65k
UAF-issue-4 UAF No

√ √ √ √
× ×

√ √ √

UAF-issue-5 UAF No
√ √ √ √

× ×
√ √ √

UAF-issue-6 UAF No
√ √ √ √

× ×
√ √ √

lua 5.3.5 30k CVE-2019-6706 UAF No
√ √ √ √

×
√ √

× −

giflib - 43k UAF-issue-7 UAF No
√ √

× × ×
√

× −
√

libheif 1.4.0 12k CVE-2019-11471 UAF Yes
√ √

× × × × × − −

Total - 6156k 34 - 14 34 30 28 27 1 19 25 16 15

34 UAFs, UAFSan finds that 14 (14/34 = 41.2%) of them are related
to memory reallocation. This indicates that UAFs that are relevant
to memory reallocation are common in practice, and UAFSan can
accurately detect UAFs in real-world programs no matter whether
the freed memory is reallocated.

4.2.3 Comparison with Existing Dynamic Detectors. Wefinally com-
pare UAFSan with eight state-of-the-art dynamic detectors. To this
end, we also apply the eight dynamic detectors to the 21 real-world
programs. The experimental results are listed in Table 2, where
“
√
”, “×”, and “-” represent that the UAF is detected, the UAF is not

detected, and the program cannot be instrumented, respectively.
Table 2 shows none of these eight dynamic detectors successfully

detect all 34 known UAFs; they miss some UAFs, more or less.
It follows thatDoubleTake has the worst UAF detection capability

because it only detects one real UAF. The reasons why DoubleTake
fails to find 33 UAFs are analyzed as follows: 1) It replaces the first
128 bytes of each freed memory object with canary values, and
can detect UAFs once the canary values are modified. Therefore, it
misses certain UAFs, each of which reads the freed memory object
and does not modify canary values. 2) It can only find UAFs on the
first 128 bytes of the freed memory object, but misses the UAFs that
occur to the rest of the freed memory object. 3) It cannot detect
UAFs relevant to memory reallocation, because in this case the
canary values on the freed object no longer exists.

TSan misses 15 UAFs because TSan focuses on detecting data
races and thus fails to detect UAFs irrelevant to data races. CETS

 //gravity_lexer.c
527. gravity_lexer_t * gravity_lexer_create(...){
528. gravity_lexer_t *lexer = mem_alloc(sizeof(...));
538. return lexer;
539. }
 //gravity_parser.c
681. static gnode_t * parse_analyze_literal_string(...){
789. gravity_lexer_t *sublexer = gravity_lexer_create(...);
804. gravity_lexer_free(sublexer);
828. }
2508.static uint32_t parser_run(...){
2522. gravity_lexer_t *lexer = CURRENT_LEXER;
2523. gravity_lexer_free(lexer);
2533.}

Figure 12: A UAF in gravity which is missed by the eight
publicly-available dynamic detectors.

and EffectiveSan cannot find 19 and 18 real UAFs, respectively, be-
cause the following two reasons. First, the prototypes of CETS and
EffectiveSan are not robust enough to instrument some real-world
programs, and thus theymiss ten and eleven UAFs, respectively. Sec-
ond, they only track pointers to record the availability of memory
objects. Hence, they cannot distinguish different memory objects
of the same type allocated on the same memory address, which
causes them to miss UAFs that are related to memory reallocation.

ASan, Valgrind, Dr.Memory and QASan detect 30, 28, 27, and
25 UAFs, respectively. They have better UAF detection capabilities
because they all delay memory reallocation with the help of a
quarantine. The reason ASan performs better than the other three
dynamic detectors lies in that the default quarantine of ASan is
256MB, which is larger than those of the others. However, ASan still

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

UAFSan: An Object-Identifier-Based Dynamic Approach for Detecting Use-After-Free Vulnerabilities ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 3: The Performance of Different Evidence-based Detectors on Large Real-World Programs

Program Version UAFSan ASan Valgrind Dr.Memory DoubleTake TSan QASan EffectiveSan CETS
TR MR TR MR TR MR TR MR TR MR TR MR TR MR TR MR TR MR

nasm 2.14.02 4.20 1.34 8.00 2.93 126.20 13.93 80.20 12.08 3.20 2.66 4.40 3.83 68.00 5.79 1.20 1.29 3.20 3.14
binaryen 1.38.22 3.71 1.65 3.14 5.24 144.43 16.44 124.29 13.31 1.43 2.91 3.57 7.06 19.14 4.90 − − − −

nasm 2.14rc02 3.60 1.84 8.40 3.98 124.80 19.61 82.00 17.08 3.00 3.76 3.60 5.46 18.80 7.06 1.20 1.86 2.80 4.25
optipng 0.6.4 6.93 1.41 3.73 4.00 34.13 28.98 10.53 30.24 6.93 3.40 3.07 6.89 39.13 10.22 7.13 1.55 6.60 2.22
readelf 2.31.1 2.16 1.93 1.80 7.90 12.18 19.30 3.47 22.22 1.16 4.38 2.29 5.56 3.53 9.92 1.35 1.46 2.33 2.26
readelf 2.28 2.00 1.86 1.67 8.06 11.80 19.71 4.20 22.68 1.22 4.49 2.06 5.69 3.80 9.47 1.26 1.50 2.34 2.24

jpegoptim 1.4.5 7.87 1.06 3.07 1.74 58.13 7.74 1.53 7.48 14.33 1.56 3.73 5.03 35.40 2.64 1.53 1.13 7.27 1.81
yara 3.5.0 1.92 1.11 1.77 1.82 91.54 6.47 52.31 3.84 14.08 1.48 3.08 4.39 26.15 1.34 − − 7.92 1.25

recutils 1.8 2.16 1.20 1.98 1.45 10.48 6.22 8.22 6.02 1.62 2.12 1.85 2.50 8.30 1.30 − − 1.75 1.31
jasper 1.900 1.03 1.37 1.02 3.69 5.34 24.65 1.60 18.92 1.02 2.88 1.12 6.31 4.22 7.73 1.99 1.79 1.04 2.30
gravity 0.2.8 6.00 1.74 9.00 6.01 256.67 19.55 286.67 17.34 2.33 3.91 5.00 6.76 20.00 5.59 − − − −

mxml 2.12 2.50 1.37 2.50 2.86 295.50 26.51 261.50 23.78 42.50 5.11 4.50 5.50 23.50 5.83 − − − −

ghostscript 9.20 3.21 1.35 2.84 2.46 45.21 3.44 10.96 2.15 2.68 1.95 9.97 4.10 20.22 2.04 − − − −

openh264 1.8.0 2.33 1.37 2.02 1.63 9.72 4.03 3.20 3.94 1.85 1.24 2.02 5.17 5.80 1.77 − − − −

cflow 1.6 9.58 1.61 4.67 3.79 55.33 21.57 23.17 18.78 1.25 2.81 2.17 5.75 40.08 7.03 1.33 1.73 8.17 1.68
GraphicsMagick 1.3.26 3.50 1.52 12.25 2.25 239.50 6.76 56.75 4.69 27.25 1.66 4.75 2.67 164.75 2.34 7.00 1.45 − −

yasm 1.3.0 2.33 2.56 2.33 4.66 223.67 20.92 60.00 16.37 1.33 2.77 4.00 5.94 26.00 6.71 1.33 2.33 34.67 3.44
lua 5.3.5 3.42 3.14 3.08 3.35 56.75 20.76 20.92 18.64 8.83 2.35 4.67 5.45 29.25 5.12 1.92 1.90 − −

giflib − 5.67 1.76 3.75 6.26 46.75 29.60 10.58 23.72 1.50 3.57 3.67 9.53 7.67 6.50 − − 8.50 1.64
libheif 1.4.0 6.69 1.72 3.46 3.05 91.54 9.94 66.92 7.91 21.54 2.26 2.85 2.62 75.38 2.05 − − − −

Geomean − 3.47 1.59 3.26 3.41 57.09 13.66 21.40 11.73 3.74 2.66 3.25 5.04 19.55 4.36 1.91 1.61 4.56 2.15

misses four UAFs. The above four dynamic detectors miss real UAFs
due to the fact that they only track objects to record the availability
of memory objects and thus cannot distinguish different memory
objects allocated on the same memory address. When the freed
memory is reused due to quarantine exhaustion, they miss real
UAFs that occur on the reallocated freed memory.

Figure 12 illustrates a real UAF that can be exploited to crash
the program5 and is missed by the eight detectors. At runtime,
the program first frees the memory object at Line 804, which also
drains the quarantine of existing detectors. Then, at Line 528, a new
memory object is allocated on the freed memory. As a result, the
eight dynamic detectors all miss the UAF that occurs at Line 2523.

In summary, UAFSan is more precise than existing dynamic
detectors that only track either pointers or objects in real-world
programs. By tracking pointers and objects using the object identi-
fiers we introduce, UAFSan can detect more UAFs.

4.3 RQ2: Performance
4.3.1 Experiment on Real-World Programs. We first evaluate the
runtime overhead and memory overhead incurred by UAFSan on
the large real-world programs in Table 2, while the program GoHttp
is excluded because it is a server program that runs continuously
and does not exit during normal execution. We measure the run-
time overhead in terms of the execution time ratio (TR), which
is the ratio of the execution time of the instrumented program to
that of the original program. Similarly, we measure the memory
overhead in terms of the memory ratio (MR), that is, the mem-
ory consumption of the instrumented program over that of the
original program. The execution time of a program refers to the
time span from program beginning to program termination, and
its memory consumption refers to the maximum resident set size
(RSS) during program execution. We use Linux’s time to collect
the execution time and memory consumption of the program, in

5https://github.com/marcobambini/gravity/issues/144

seconds and kilobytes, respectively. To ensure accuracy, we repeat
the experiment 10 times and average the collected execution time
(memory consumption). For comparison, we also apply the eight
publicly-available dynamic detectors to these real-world programs.
The performance results are listed in Table 3.

It follows from Table 3 that UAFSan exhibits runtime overhead
ranging from 1.03x to 9.58x with a geomean of 3.47x, and memory
overhead ranging from 1.06x to 3.14x with a geomean of 1.59x. By
contrast, the geomean runtime overhead of Valgrind, Dr.Memory
and QASan is 57.09x, 21.40x, and 19.55x, respectively; the geomean
memory overhead is 13.66x, 11.73x and 4.36x, respectively. There-
fore, UAFSan outperforms Valgrind, Dr.Memory and QASan in
terms of both runtime overhead andmemory overhead. The reasons
are analyzed as follows. First,UAFSan uses compile-time instrumen-
tation, and thus avoids the overhead of dynamic instrumentation.
Second, UAFSan only requests additional memory space when nec-
essary, whereas the three detectors request a large memory at the
very beginning. The runtime overhead and memory overhead of
UAFSan is comparable to that of the other five dynamic detectors,
including ASan. The geomean runtime overhead of ASan is 3.26x,
which is slightly lower than that (3.47x) of UAFSan; the geomean
memory overhead of ASan is 3.41x, which is much higher than
that (1.59x) of UAFSan. Overall, the performance of UAFSan is bet-
ter than that of ASan because the runtime overhead is similar but
ASan introduces more memory overhead. Specifically, for the three
programs (optipng, gravity, and mxml) from which ASan does not
find UAFs, the geomean runtime overhead (memory overhead) of
UAFSan and ASan on the three programs is 4.70x (1.49x) and 4.37x
(4.09x), respectively. Notably, for gravity, both runtime overhead
and memory overhead of UAFSan is lower than that of ASan. These
indicate that UAFSan can find some missing UAFs that ASan fails
to find and it does not have a performance penalty.

The performance difference betweenUAFSan and ASan is mainly
due to the two different instrumentation algorithms used. UAFSan

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 4: The Performance of Different Evidence-based Detectors on MiBench Benchmark

Program UAFSan ASan Valgrind Dr.Memory DoubleTake TSan QASan EffectiveSan CETS
TR MR TR MR TR MR TR MR TR MR TR MR TR MR TR MR TR MR

basicmath (s) 1.18 1.09 2.09 2.20 71.82 19.97 12.73 15.59 1.18 2.41 2.18 4.29 14.00 4.82 1.09 2.16 1.27 1.08
basicmath (l) 1.08 1.12 1.36 2.19 25.97 19.67 3.05 15.36 1.04 2.39 1.46 4.27 8.03 4.92 1.03 2.15 1.06 1.13
bitcount (s) 1.79 1.30 1.64 3.05 43.79 29.74 8.86 23.66 1.21 3.38 3.36 6.19 10.93 6.24 1.50 1.41 1.93 1.30
bitcount (l) 2.05 1.28 1.32 2.99 16.89 29.06 2.15 22.99 1.08 3.32 3.39 6.07 10.89 6.94 1.44 1.47 2.11 1.27
qsort (s) 3.00 1.66 2.60 3.55 109.60 16.92 33.80 10.65 2.20 4.53 5.80 7.92 15.00 6.54 1.20 3.07 649.00 3.96
qsort (l) 2.06 1.42 1.81 2.44 101.81 11.09 4.97 7.01 1.42 2.99 2.53 5.47 9.33 4.70 1.25 3.08 1172.39 2.55
susan (s) 5.58 1.15 14.42 2.64 143.17 20.37 30.25 15.84 1.33 2.44 15.25 4.54 17.00 5.37 1.83 5.67 4.33 1.15
susan (l) 6.61 1.06 2.34 2.36 28.63 14.75 4.92 11.49 1.10 2.14 25.63 4.95 14.21 3.95 2.58 4.64 7.95 1.21
adpcm (s) 2.02 1.35 1.32 2.99 29.02 30.17 5.28 24.01 3.72 3.08 2.64 6.26 6.66 7.09 1.43 1.30 1.74 1.34
adpcm (l) 2.43 1.34 1.29 3.13 9.36 30.91 1.59 24.62 3.95 3.16 2.87 6.48 6.11 7.33 1.54 1.30 1.98 1.37
CRC32 (s) 3.94 1.31 1.52 3.09 27.63 30.68 6.55 24.40 1.19 3.47 2.99 5.80 14.50 6.40 1.88 1.33 3.55 1.39
CRC32 (l) 3.63 1.30 1.57 3.10 24.71 30.68 5.84 24.47 1.13 3.47 2.74 5.77 12.68 6.37 1.78 1.36 3.27 1.44
FFT (s) 2.71 1.12 2.36 2.23 103.64 19.73 18.36 15.41 1.57 2.39 2.50 4.42 4.79 4.03 1.50 1.78 1.86 1.13
FFT (l) 3.41 1.10 1.34 2.16 35.25 17.70 4.70 13.85 1.02 2.29 1.86 4.66 1.75 3.61 1.16 1.89 1.67 1.17
gsm (s) 8.58 1.40 2.25 3.12 114.00 19.85 72.33 12.98 1.92 5.52 5.67 6.25 12.25 6.26 1.58 1.66 3.67 1.51
gsm (l) 6.37 1.45 1.65 3.32 40.33 21.04 22.34 13.78 1.07 5.85 6.69 7.00 9.54 6.71 1.82 1.71 5.17 1.60
sha (s) 2.60 1.25 2.60 2.99 98.40 29.26 22.20 23.27 1.20 3.47 6.40 6.14 14.20 6.76 1.80 1.43 2.40 1.26
sha (l) 3.76 1.34 2.21 3.18 31.72 30.76 4.83 24.51 1.07 3.48 7.83 6.43 12.62 6.46 2.21 1.41 3.62 1.41

blowfish (s) 9.19 1.44 2.96 3.79 112.85 31.22 53.46 24.89 1.38 6.06 6.04 6.76 9.92 6.69 1.77 1.70 15.15 1.54
blowfish (l) 8.48 1.31 3.57 3.44 64.04 28.60 39.15 22.81 1.71 5.50 7.60 6.14 9.59 7.20 2.34 1.68 8.11 1.37

stringsearch (s) 1.50 1.31 2.00 2.92 218.00 30.39 51.50 24.14 2.00 3.44 3.50 5.78 21.00 6.35 1.50 1.40 1.50 1.38
stringsearch (l) 1.25 1.37 1.75 2.84 112.00 29.76 28.25 23.68 1.75 3.38 3.00 5.89 12.00 7.19 1.50 1.38 1.50 1.51
dijkstra (s) 4.73 1.48 2.33 3.43 37.07 30.10 9.73 23.88 1.93 3.44 7.47 6.68 11.20 12.32 2.20 1.51 3.87 1.67
dijkstra (l) 6.32 1.47 2.70 5.78 17.94 30.46 5.38 24.22 1.45 3.52 7.91 6.72 11.42 37.99 2.36 1.45 5.25 2.56
patricia (s) 2.60 2.52 1.67 2.26 61.00 17.51 10.33 13.92 1.53 2.69 2.40 5.54 12.27 10.29 1.60 1.40 1.87 3.49
patricia (l) 3.13 3.48 2.18 1.60 41.32 9.26 4.51 4.89 1.54 2.05 2.46 4.72 14.91 12.97 1.17 1.43 2.14 5.37
Geomean 3.19 1.39 2.10 2.87 50.38 23.04 10.75 17.38 1.49 3.30 4.23 5.74 10.47 6.84 1.61 1.78 4.44 1.60

tracks pointers and objects using the object identifiers we intro-
duce, while ASan only tracks objects by implementing the one-level
lookup table using a large shadow space with a large amount of
unused memory. Therefore, ASan is generally faster than UAFSan,
but at the cost of consuming much more memory. However, since
UAFSan maintains only one meta-data instance for each object and
pointer, whereas ASan maintains one meta-data instance for every
8 bytes of each object, UAFSan is sometimes better than ASan in
terms of both runtime overhead and memory overhead.

4.3.2 Experiment on MiBench. Since the large real-world programs
in Table 2 are not provided with sufficient test suites and some
dynamic detectors do not work well on them, we then use MiBench
to more fully evaluate the performance of the dynamic detectors
for comparison. The small (s) and large (l) input files are provided
as program input. We also repeat the experiment 10 times and
average the collected execution time (memory consumption) to
ensure accuracy.

Table 4 lists the performance results. As shown in Table 4, UAF-
San is better than Valgrind, Dr.Memory and QASan in terms of
both runtime overhead and memory overhead. The reasons have
been mentioned in Section 4.3.1. On MiBench benchmark, the per-
formance of UAFSan is still comparable to or even better than that
of the other five dynamic detectors, including ASan. The geomean
runtime overhead of ASan is 2.10x, which is lower than that (3.19x)
of UAFSan, but the geomean memory overhead of ASan is 2.87x,
which is much higher than that (1.39x) of UAFSan. Overall, the
performance of UAFSan is not worse than that of ASan.

In summary, UAFSan is better than existing publicly-available
dynamic detectors because UAFSan is more effective without sacri-
ficing performance.

4.4 Discussion
Limitations. Although our approach theoretically applies to bi-
naries if the type information is available [15, 54], our prototype
currently uses compile-time instrumentation, so the program source
code is required. As a result, similar to existing dynamic detection
approaches [7, 28, 35, 40],UAFSan cannot instrument the C libraries
and the third-party libraries that are not open-source, and thus may
miss some UAFs.

UAFSan may report false positives due to the following two
reasons: 1) Programs may have type casting between pointer types
and non-pointer types, resulting in special aliases that affect the
proper propagation of pointer meta-data. Existing approaches [16,
27, 51, 57] also suffer from this limitation. Fortunately, since it is
rare in practice, its impact on UAFSan is slim. 2) Programs may
have functions with variable number of arguments. Thus, similar
to existing pointer-based approaches [10, 32, 46], our approach can
hardly propagate pointer meta-data to such functions.

Memory check optimizations. We can perform some opti-
mizations to eliminate redundant memory checks, thus improving
efficiency without sacrificing accuracy. The potential optimizations
are as follows: 1) For loops, only one memory check is instrumented
if the same memory object is accessed in the loop. 2) If no function
call occurs between multiple consecutive access to the same object,
only one memory check is instrumented. Some redundant mem-
ory checks cannot be eliminated if a function is invoked between

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

UAFSan: An Object-Identifier-Based Dynamic Approach for Detecting Use-After-Free Vulnerabilities ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

multiple access to the same object, because the function call may
change the state of the memory object or the pointer.

5 RELATEDWORK
In this section, we review the related work on detecting and miti-
gating UAFs in C/C++ programs.

5.1 UAF Detection
Dynamic evidence-based detectors [7, 16, 19, 28, 32, 35, 40–42, 46]
only track either pointers or objects to record the status of each
memory object, but do not distinguish different objects successively-
allocated on the same address. Consequently, they all miss cer-
tain UAFs when the freed memory is reallocated. Valgrind [35],
QASan [19] and Dr.Memory [7] leverage different DBI frameworks
to dynamically instrument programs and thus incur heavy runtime
overhead. DoubleTake [28] uses library interposers to dynamically
instrument programs and can only detect UAFs that write to the
freed memory. ASan [40] instruments programs at compile time
and thus incurs lower runtime overhead. EffectiveSan [16] uses
fat pointers to record memory addresses that pointers can safely
access. However, EffectiveSan changes the memory layout and in-
evitably introduces compatibility issues. To this end, CETS [32],
MemSafe [46] andMOVEC [10] employ disjoint meta-data storage
to track pointers. TSan [41, 42] aims to detect data races and thus
may fail to detect UAFs irrelevant to data races. Compared to these
existing dynamic detectors, UAFSan is more precise as it can detect
UAFs nomatter whether the freed memory is reallocated.UAFL [52]
is orthogonal to UAFSan because it focuses on generating test cases
for sake of finding UAFs based on dynamic detectors.

The prediction-based detectors, i.e., UFO [22] and ConVul [9, 30]
are designed to predict concurrent UAFs. They do not consider
UAFs in sequential C/C++ programs [30].

There are a few static analysis approaches for detecting UAFs [18,
55, 56]. GUEB [18] uses dedicated value analysis to track heap oper-
ations and pointer propagation. However, since its inter-procedural
analysis is based on function in-lining, it may repeat analyzing the
same function multiple times. CRed [56] detects UAFs based on the
demand-driven pointer analysis and spatial-temporal context reduc-
tion. Similar to CRed, Tac [55] is also based on the demand-driven
pointer analysis. The difference is that Tac uses machine learning
to reduce false positives. Although the above approaches achieve
higher code coverage, they are not suitable for large programs and
may generate false positives and false negatives. In contrast to these
approaches, UAFSan reports fewer or no false positives.

5.2 Runtime UAF Protection
Our work is also related to UAF exploit mitigation, which has re-
ceived much attention [1, 3–6, 8, 11–13, 17, 20, 23, 25, 31, 33, 34, 37–
39, 44, 45, 51, 53, 57, 58].

FreeSentry [57],DangNULL [25], andDangSan [51] prevent UAF
exploits by explicitly invalidating dangling pointers. They keep
track of pointers to the same object and invalidate these pointers
once the memory object is released. pSweeper [27] differs from the
above approaches in that it uses an extra thread to invalidate all
dangling pointers and thus achieves lower runtime overhead.

DangDone [53] and MPChecker [38] protect against UAF ex-
ploits by inserting intermediate pointers between objects and their
pointers. All operations performed on memory objects through
their pointers must be performed via intermediate pointers. Once a
memory object is freed, they invalidate the intermediate pointer.
Thus, dangling pointers can no longer re-access the freed memory.

Overwriting virtual table pointers is the most widely used tech-
nique to exploit UAFs. SafeDispatch [23], VTpin [39], VTV [49],
and Vip [17] protect virtual table pointers to mitigate UAF exploits.
Although these approaches introduce low runtime overhead, they
can only protect pointers that are virtual table pointers. As a re-
sult, when attackers target other pointers instead of virtual table
pointers, these approaches are ineffective.

DieHard [4], DieHarder [36] and Archipelago [29] assume that
the heap space is infinite, and randomly allocate memory objects
on the heap. Thus, attackers cannot easily allocate objects on the
freed memory. ZEUS [58] improves DieHard in that it introduces
additionally random prefix offsets into a single object. However,
the above mitigation approaches only provide probabilistic security,
which can be bypassed by some ways [14, 48].

Cling [3] and Type-after-Type [50] only allow the freed memory
to be reallocated to heap objects of the same type. In contrast to
Cling, Type-after-Type uses static analysis to infer the object type
instead of performing object type inference at runtime. However,
they can only defend against UAFs between objects of different
types and cannot prevent UAFs between objects of the same type.

Oscar [13] employs isolated heap allocation to prevent UAF
exploits. For each newly allocated memory object, it allocates a
new virtual page, and thus the newly-allocated memory object can-
not be accessed through a dangling pointer. However, the isolated
heap allocation mechanism may incur larger runtime overhead in
memory-intensive programs.

6 CONCLUSIONS
Use-After-Free (UAF) vulnerabilities, including double-free vulner-
abilities, pose serious threats to C/C++ programs. Existing dynamic
detectors (sanitizers) all miss certain UAFs on sequential programs
because their detection capabilities are compromisedwhen the freed
memory is reallocated. To this end, we propose a novel technique
UAFSan, which is dedicated to accurately and comprehensively
detecting UAFs including double-frees. UAFSan achieves this by
assigning each newly-allocated heap object a unique identifier and
propagating this unique identifier to all pointers to the object. Once
a heap object is freed,UAFSan invalidates the unique identifier with
the object, while pointers of the object still retain this unique identi-
fier. When a dangling pointer is dereferenced, the current object on
that accessed memory is either a freed object or a new object, and
in either case, the identifier of the current object does not match
the identifier of the dangling pointer. Thus, UAFSan can detect the
UAF that occurs. Experimental results on popular benchmarks and
real-world programs demonstrate that UAFSan is more precise than
existing publicly-available evidence-based dynamic detectors as it
detects more UAFs with reasonable overhead. The future work can
study how the new UAFs detected in popular software could be
exploited to launch attacks.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM Trans. Inf. Syst.
Secur. 13, 1 (2009), 4:1–4:40.

[2] Sam Ainsworth and Timothy M. Jones. 2020. MarkUs: Drop-in use-after-free
prevention for low-level languages. In Proceedings of the IEEE Symposium on
Security and Privacy, SP’20, San Francisco, CA, USA, May 18-21. 578–591.

[3] Periklis Akritidis. 2010. Cling: AMemory Allocator to Mitigate Dangling Pointers.
In Proceedings of the 19th USENIX Security Symposium, Washington, DC, USA,
August 11-13. 177–192.

[4] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: probabilistic memory
safety for unsafe languages. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, Ottawa, Ontario, Canada,
June 11-14. 158–168.

[5] Hans Boehm, Alan Demers, and Mark Weiser. [n.d.]. A garbage collector for C
and C++. http://hboehm.info/gc/

[6] Hans-Juergen Boehm and Mark D. Weiser. 1988. Garbage Collection in an
Uncooperative Environment. Softw. Pract. Exp. 18, 9 (1988), 807–820.

[7] Derek Bruening and Qin Zhao. 2011. Practical memory checking with Dr.Memory.
In Proceedings of the 9th International Symposium on Code Generation and Opti-
mization, CGO’11, Chamonix, France, April 2-6. 213–223.

[8] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-
dangle: early detection of dangling pointers in use-after-free and double-free
vulnerabilities. In Proceedings of the International Symposium on Software Testing
and Analysis, ISSTA’12, Minneapolis, MN, USA, July 15-20. 133–143.

[9] Yan Cai, Biyun Zhu, Ruijie Meng, Hao Yun, Liang He, Purui Su, and Bin Liang.
2019. Detecting concurrency memory corruption vulnerabilities. In Proceedings
of the ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE’19, Tallinn,
Estonia, August 26-30. 706–717.

[10] Zhe Chen, Junqi Yan, Shuanglong Kan, Ju Qian, and Jingling Xue. 2019. Detecting
memory errors at runtime with source-level instrumentation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA’19, Beijing, China, July 15-19. 341–351.

[11] Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and Westley
Weimer. 2003. CCured in the real world. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI’03, San
Diego, California, USA, June 9-11. 232–244.

[12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. 2012. Frama-C - A Software Analysis Perspective. In
Proceedings of the 10th International Conference on Software Engineering and
Formal Methods, SEFM’12, Thessaloniki, Greece, October 1-5. 233–247.

[13] Thurston H. Y. Dang, Petros Maniatis, and David A. Wagner. 2017. Oscar: A
Practical Page-Permissions-Based Scheme for Thwarting Dangling Pointers. In
Proceedings of the 26th USENIX Security Symposium (USENIX Security’17), Van-
couver, BC, Canada, August 16-18. 815–832.

[14] Mark Daniel, Jake Honoroff, and Charlie Miller. 2008. Engineering Heap Overflow
Exploits with JavaScript. In Proceedings of the 2nd USENIX Workshop on Offensive
Technologies, WOOT’08, San Jose, CA, USA, July 28.

[15] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.
In Proceedings of the IEEE Symposium on Security and Privacy, SP’20, San Francisco,
CA, USA, May 18-21. 1497–1511.

[16] Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: type and memory error
detection using dynamically typed C/C++. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI’18,
Philadelphia, PA, USA, June 18-22. 181–195.

[17] Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. 2017. Boosting the
precision of virtual call integrity protection with partial pointer analysis for C++.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA’17, Santa Barbara, CA, USA, July 10 - 14. 329–340.

[18] Josselin Feist, Laurent Mounier, and Marie-Laure Potet. 2014. Statically detecting
use after free on binary code. J. Comput. Virol. Hacking Tech. 10, 3 (2014), 211–217.

[19] Andrea Fioraldi, Daniele Cono D’Elia, and Leonardo Querzoni. 2020. Fuzzing
Binaries for Memory Safety Errors with QASan. In Proceedings of the IEEE Secure
Development, SecDev’20, Atlanta, GA, USA, September 28-30. 23–30.

[20] Robert Gawlik and Thorsten Holz. 2014. Towards automated integrity protection
of C++ virtual function tables in binary programs. In Proceedings of the 30th
Annual Computer Security Applications Conference, ACSAC’14, New Orleans, LA,
USA, December 8-12. 396–405.

[21] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. 2001. MiBench: A free, commercially representative embedded bench-
mark suite. In Proceedings 4th annual IEEE international workshop on workload
characterization. WWC-4 (Cat. No. 01EX538), Austin, TX, USA, December 2. 3–14.

[22] Jeff Huang. 2018. UFO: predictive concurrency use-after-free detection. In Pro-
ceedings of the 40th International Conference on Software Engineering, ICSE’18,
Gothenburg, Sweden, May 27 - June 03, Michel Chaudron, Ivica Crnkovic, Marsha

Chechik, and Mark Harman (Eds.). 609–619.
[23] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2014. SafeDispatch: Securing

C++ Virtual Calls from Memory Corruption Attacks. In Proceedings of the 21st
Annual Network and Distributed System Security Symposium, NDSS’14, San Diego,
California, USA, February 23-26.

[24] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2nd IEEE /
ACM International Symposium on Code Generation and Optimization, CGO’04,
20-24 March, San Jose, CA, USA. 75–88.

[25] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. 2015. Preventing Use-after-free with Dangling Pointers
Nullification. In Proceedings of the 22nd Annual Network and Distributed System
Security Symposium, NDSS’15, San Diego, California, USA, February 8-11.

[26] Beichen Liu, Pierre Olivier, and Binoy Ravindran. 2019. SlimGuard: A Secure
and Memory-Efficient Heap Allocator. In Proceedings of the 20th International
Middleware Conference, Middleware’19, Davis, CA, USA, December 9-13. 1–13.

[27] Daiping Liu, Mingwei Zhang, and Haining Wang. 2018. A Robust and Efficient
Defense against Use-after-Free Exploits via Concurrent Pointer Sweeping. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security, CCS’18, Toronto, ON, Canada, October 15-19. 1635–1648.

[28] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2016. DoubleTake: fast
and precise error detection via evidence-based dynamic analysis. In Proceedings
of the 38th ACM/IEEE International Conference on Software Engineering, ICSE’16,
Austin, TX, USA, May 14-22. 911–922.

[29] Vitaliy B. Lvin, Gene Novark, Emery D. Berger, and Benjamin G. Zorn. 2008.
Archipelago: trading address space for reliability and security. In Proceedings
of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’08, Seattle, WA, USA, March 1-5, 2008,
Susan J. Eggers and James R. Larus (Eds.). 115–124.

[30] Ruijie Meng, Biyun Zhu, Hao Yun, Haicheng Li, Yan Cai, and Zijiang Yang.
2019. CONVUL: An Effective Tool for Detecting Concurrency Vulnerabilities. In
Proceedings of the 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE’19, San Diego, CA, USA, November 11-15. 1154–1157.

[31] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Watchdog:
Hardware for safe and secure manual memory management and full memory
safety. In Proceedings of the 39th Annual International Symposium on Computer
Architecture, ISCA’12, June 9-13, Portland, OR, USA. 189–200.

[32] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
2010. CETS: compiler enforced temporal safety for C. In Proceedings of the 9th
International Symposium on Memory Management, ISSM’10, Toronto, Ontario,
Canada, June 5-6. 31–40.

[33] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans.
Program. Lang. Syst. 27, 3 (2005), 477–526.

[34] George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured: type-safe
retrofitting of legacy code. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI’02, Portland, OR, USA,
January 16-18. 128–139.

[35] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI’07, San
Diego, California, USA, June 10-13. 89–100.

[36] Gene Novark and Emery D. Berger. 2010. DieHarder: securing the heap. In
Proceedings of the 17th ACM SIGSAC Conference on Computer and Communications
Security, CCS’10, Chicago, Illinois, USA, October 4-8. 573–584.

[37] Aravind Prakash, Xunchao Hu, and Heng Yin. 2015. vfGuard: Strict Protection
for Virtual Function Calls in COTS C++ Binaries. In Proceedings of the 22nd
Annual Network and Distributed System Security Symposium, NDSS’15, San Diego,
California, USA, February 8-11.

[38] Weizhong Qiang, Weifeng Li, Hai Jin, and Jayachander Surbiryala. 2019.
Mpchecker: Use-After-Free Vulnerabilities Protection Based onMulti-Level Point-
ers. IEEE Access 7 (2019), 45961–45977.

[39] Pawel Sarbinowski, Vasileios P. Kemerlis, Cristiano Giuffrida, and Elias Athana-
sopoulos. 2016. VTPin: practical VTable hijacking protection for binaries. In
Proceedings of the 32nd Annual Computer Security Applications Conference, AC-
SAC’16, Los Angeles, CA, USA, December 5-9, 2016. 448–459.

[40] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceedings
of the USENIX Annual Technical Conference, USENIX ATC’12, Boston, MA, USA,
June 13-15. 309–318.

[41] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race
detection in practice. In Proceedings of the the workshop on binary instrumentation
and applications, New York, USA, December 12. ACM, 62–71.

[42] Konstantin Serebryany, Alexander Potapenko, Timur Iskhodzhanov, and Dmitriy
Vyukov. 2011. Dynamic Race Detection with LLVM Compiler - Compile-Time
Instrumentation for ThreadSanitizer. In Proceedings of the 2nd International Con-
ference on Runtime Verification, RV’11, San Francisco, CA, USA, September 27-30.
110–114.

12

http://hboehm.info/gc/

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

UAFSan: An Object-Identifier-Based Dynamic Approach for Detecting Use-After-Free Vulnerabilities ISSTA 2021, 12-16 July, 2021, Aarhus, Denmark

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

[43] Rasool Sharifi and Ashish Venkat. 2020. CHEx86: Context-Sensitive Enforcement
of Memory Safety via Microcode-Enabled Capabilities. In Proceedings of the 47th
ACM/IEEE Annual International Symposium on Computer Architecture, ISCA’20,
Valencia, Spain, May 30 - June 3. 762–775.

[44] Zekun Shen and Brendan Dolan-Gavitt. 2020. HeapExpo: Pinpointing Promoted
Pointers to Prevent Use-After-Free Vulnerabilities. In Proceedings of the Annual
Computer Security Applications Conference, ACSAC’20, Virtual Event/Austin, TX,
USA, 7-11 December. 454–465.

[45] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Yunheung Paek.
2019. CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-
after-free in Legacy C/C++. In Proceedings of the 26th Annual Network and Dis-
tributed System Security Symposium, NDSS’19, SanDiego, California, USA, February
24-27.

[46] Matthew S. Simpson and Rajeev Barua. 2013. MemSafe: ensuring the spatial and
temporal memory safety of C at runtime. Softw. Pract. Exp. 43, 1 (2013), 93–128.

[47] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert,
Per Larsen, and Michael Franz. 2019. SoK: Sanitizing for Security. In Proceedings
of the IEEE Symposium on Security and Privacy, SP’19, San Francisco, CA, USA,
May 19-23. 1275–1295.

[48] Alexander Sotirov. 2007. Heap feng shui in javascript. http://www.phreedom.
org/research/heap-feng-shui/heap-feng-shui.html.

[49] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In Proceedings of the 23rd USENIX Security
Symposium, USENIX Security’14, San Diego, CA, USA, August 20-22. 941–955.

[50] Erik van der Kouwe, Taddeus Kroes, Chris Ouwehand, Herbert Bos, and Cristiano
Giuffrida. 2018. Type-After-Type: Practical and Complete Type-Safe Memory
Reuse. In Proceedings of the 34th Annual Computer Security Applications Confer-
ence, ACSAC’18, San Juan, PR, USA, December 03-07. 17–27.

[51] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan:
Scalable Use-after-free Detection. In Proceedings of the 12th European Conference

on Computer Systems, EuroSys’17, Belgrade, Serbia, April 23-26. 405–419.
[52] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao

Qin, Hongxu Chen, and Yulei Sui. 2020. Typestate-guided fuzzer for discovering
use-after-free vulnerabilities. In Proceedings of the 42nd International Conference
on Software Engineering, ICSE’20, Seoul, South Korea, 27 June - 19 July. 999–1010.

[53] Yu Wang, Fengjuan Gao, Lingyun Situ, Lingzhang Wang, Bihuan Chen, Yang Liu,
Jianhua Zhao, and Xuandong Li. 2018. DangDone: Eliminating Dangling Pointers
via Intermediate Pointers. In Proceedings of the 10th Asia-Pacific Symposium on
Internetware, Internetware’18, Beijing, China, September 16. 6:1–6:10.

[54] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Pat-
terson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis. 2020.
Egalito: Layout-Agnostic Binary Recompilation. In Proceedings of the 25th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’20, Lausanne, Switzerland, March 16-20. 133–147.

[55] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2017. Machine-Learning-
Guided Typestate Analysis for Static Use-After-Free Detection. In Proceedings of
the 33rd Annual Computer Security Applications Conference, ACSAC’17, Orlando,
FL, USA, December 4-8. 42–54.

[56] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-temporal context
reduction: a pointer-analysis-based static approach for detecting use-after-free
vulnerabilities. In Proceedings of the 40th International Conference on Software
Engineering, ICSE’18, Gothenburg, Sweden, May 27 - June 03. 327–337.

[57] Yves Younan. 2015. FreeSentry: protecting against use-after-free vulnerabili-
ties due to dangling pointers. In Proceedings of the 22nd Annual Network and
Distributed System Security Symposium, NDSS’15, San Diego, California, USA,
February 8-11.

[58] Mingbo Zhang and Saman A. Zonouz. 2018. Use-After-Free Mitigation via
Protected Heap Allocation. In Proceedings of the IEEE Conference on Dependable
and Secure Computing, DSC’18, Kaohsiung, Taiwan, December 10-13. 1–8.

13

http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html
http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html

	Abstract
	1 Introduction
	2 Motivation
	3 UAFSan
	3.1 Supporting Data Structures
	3.2 Compile-time Instrumentation
	3.3 Heap Object Manager
	3.4 Pointer Tracker and Memory Access Checker

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Effectiveness
	4.3 RQ2: Performance
	4.4 Discussion

	5 Related Work
	5.1 UAF Detection
	5.2 Runtime UAF Protection

	6 Conclusions
	References

